Adjustment Costs, Firm Responses, and Labor Supply Elasticities: Evidence from Danish Tax Records

> Raj Chetty, Harvard University and NBER John N. Friedman, Harvard University and NBER Tore Olsen, Harvard University and CAM Luigi Pistaferri, Stanford University and NBER

> > March 2010

Introduction

- How do taxes affect labor supply and earnings behavior?
 - Most find intensive margin elasticities near zero (Heckman 1993, Blundell and MaCurdy 1999, Saez et al 2009)
 - Literature assumes that workers may freely choose labor supply
- Two factors prevent workers from choosing labor supply freely:
 - Search costs in finding optimal job
 - Constraints imposed by firms (e.g. hours constraints)
- Because of these frictions, workers may not reoptimize in response to tax changes of small size and scope in short run

→ Micro elasticity estimates may be attenuated relative to elasticities relevant for macro comparisons

<u>Overview</u>

- Derive three testable predictions about how adjustment costs and hours constraints affect micro labor supply elasticity estimates
- Test predictions using an administrative tax panel for the population of Denmark
- Find that standard micro methods of estimating elasticities on this dataset yields elasticities close to zero
- But accounting for frictions produces sharp evidence of larger elasticities and explains why standard approach is biased
- Calibration suggests that micro elasticity estimates understate the macro elasticities by an order of magnitude

Model with Search Costs and Endogenous Institutional Constraints

- Two types of labor supply models in existing literature
 - Neo-classical: workers freely choose hours
 - Hours constraints: wage-hours packages determined by firms' production technologies (Rosen 1976, Blundell et al. 2008)
- This paper: model of *endogenous* hours constraints
 - Wage-hours packages offered by firms reflect workers' aggregate preferences
 - But workers face search frictions, so each worker is not at his individual optimum

Model Setup

• Workers: Constant elasticity quasi-linear utility function

$$u_i(c,h) = c - \alpha_i^{-1/\varepsilon} \frac{h^{1+1/\varepsilon}}{1+1/\varepsilon}$$

- c is consumption and α_i is an individual taste parameter
- Smooth distribution $F(\alpha_i)$ in the economy
- Firms: CRS Leontief production function

$$\pi_j = pN_j \min\{h_j^1, \dots, h_j^{N_j}\} - w_j \sum_{i=1}^{N_j} h_j^i$$

- Offers (possibly heterogeneous) wage-hours packages {h_i, w_i}
- Workers all produce goods sold a price *p*
- Firm size *N_i* determined endogenously in equilibrium

Model Setup

- Search Frictions:
 - Workers initially draw job with wage-hours package $\{h_0, w_0\}$ from distribution G(.) offered by firms
 - Two ways to switch jobs:
 - Switch to job with same hours but higher wage at no cost (e.g., no re-training required)
 - 2. Switch to different hours by paying a cost:
 - Draw new wage-hours package $\{h', w'\}$ from $G_e(.|h_i^*)$
 - Draw centered at optimal job, $E(h' | h_i^*) = h_i^*$
 - Variance decreasing in effort, Var(h') = k(1 e)
 - Search cost $\Phi(e)$ weakly increasing in effort e

Model Setup

- Equilibrium:
 - Firm maximize profits

• All workers paid same wage
$$w_i = w = p$$

- Workers choose optimal search effort (or not to search at all)
 - Workers only search if utility gain $u_i(h^*) u_i(h_0) > \Phi(e_i^*)$

$$h_0 \notin \left[\underline{h}_i, \overline{h}_i\right]$$

- Market clears: Supply equals demand at each hours level
 - Search process $\mathcal{F}(.)$ does not change the hours distribution

 $G(h) = \mathcal{F}(G(h))$

Estimating Elasticities: Benchmark Frictionless Model

- Special case: $\Phi(e) = 0$, all workers choose $h_i = h_i^*$
- Structural parameter ε determines wage elasticity of labor supply

$$\varepsilon = \frac{d \log h}{d \log(1-\tau)}$$

- Two micro methods of identifying structural elasticity ε
- 1. Variation in tax rates over time. For individuals affected by tax change, observed hours elasticity w.r.t. net-of-tax wage equals ϵ
- 2. Variation in rates across tax brackets. Amount of bunching at kinks can be used to estimate ϵ

Income/Labor Supply

----- Consumption ----- Before Kink Introduction ----- After Kink Introduction

Income/Labor Supply

Income/Labor Supply

----- Consumption ----- Before Kink Introduction ----- After Kink Introduction

Income/Labor Supply

——— Consumption —— Before Kink Introduction —— After Kink Introduction

Income/Labor Supply

——— Consumption —— Before Kink Introduction —— After Kink Introduction

Baseline Case: Estimating Elasticities

- Special case: $\Phi(e) = 0$, all workers choose $h_i = h_i^*$
- Structural parameter ε determines wage elasticity of labor supply

$$\varepsilon = \frac{d \log h}{d \log(1-\tau)}$$

- Two micro methods of identifying structural elasticity ε
- 1. Variation in tax rates over time. For individuals affected by tax change, observed hours elasticity w.r.t. net-of-tax wage equals ϵ
- 2. In non-linear tax system, use variation in rates across tax brackets. Examine amount of bunching at the kink.
- → How do frictions affect estimated elasticities?

Bunching with Search Frictions

- With hour constraints, there are two ways to locate at the kink
 - 1. *Individual Bunching*: Workers search for a job at the kink
 - 2. *Firm Bunching*: Draw job at kink to begin with
 - Signature of firm bunching: Even workers who do not face a kink bunch there
- Three predictions about observed elasticity measured from bunching at kink

Effects of Frictions on Observed Elasticities

- Three empirical predictions:
 - 1. [Size] Larger kinks generate larger observed elasticities
 - Large kinks are more likely to induce workers to pay search costs and relocate to the kink

Effects of Frictions on Observed Elasticities

- Three empirical predictions:
 - 1. [Size] Larger kinks generate larger observed elasticities
 - Large kinks are more likely to induce workers to pay search costs and relocate to the kink
 - 2. [Scope] Kinks that affect a larger group of workers generate larger observed elasticities
 - Firms tailor jobs to aggregate preferences → more firm bunching at common kinks

Effects of Frictions on Observed Elasticities

- Three empirical predictions:
 - 1. [Size] Larger kinks generate larger observed elasticities
 - Large kinks are more likely to induce workers to pay search costs and relocate to the kink
 - 2. [Scope] Kinks that affect a larger group of workers generate larger observed elasticities
 - Firms tailor jobs to aggregate preferences → more firm bunching at common kinks
 - 3. [**Correlation**] More firm bunching in sectors with greater individual bunching
 - In sectors of the economy where workers are more elastic, firms offer more jobs at the kink.

Micro vs Macro Elasticities

 Define macro elasticity as effect of difference in tax rates across economies on average hours of work:

$$\hat{\varepsilon}_{\text{MAC}} = \frac{\mathbb{E} \log h_i(\tau_1') - \mathbb{E} \log h_i(\tau_1)}{\log(1 - \tau_1') - \log(1 - \tau_1)}$$

- In frictionless model, observed elasticities coincide with structural elasticity irrespective of size and scope
 - \rightarrow No difference between micro and macro elasticities
- In our model, macro elasticity coincides with ε even with frictions
 - But micro estimates are attenuated
 - Intuition: micro estimates identified from "fine tuning" of hours in response to tax changes or locating at kinks

DATA AND INSTITUTIONAL BACKGROUND

- Matched employer-employee panel data with admin tax records for full population
 - Income vars: wage earnings, capital and stock income, pension contributions
 - Employer vars: tenure, occupation, employer ID
 - Demographics: education, spouse ID, kids, municipality
- Sample restriction: Wage-earners aged 15-70, 1994-2001
 - Approximately 2.42 million people per year

Marginal Tax Rates in Denmark in 2000

KEY FEATURES OF TAX SYSTEM 1994-2001

- Taxable income = wage earnings + net deductions
 - Wage earnings: double reported by firms and workers
 - Net deductions:
 - Non-wage income: gifts, awards, company cars
 - Deductions: pension contributions, some work expenses
- Question of shifting vs. "real" labor supply responses
- Top bracket cutoffs move over time
 - Indexed to two-year lagged earnings growth: tax policy set before earnings choices are made

Movement in Top Tax Cutoff Across Years

Income Distribution for Wage Earners Around Top Kink (1994-2001)

Income Distribution for Wage Earners Around Top Kink (1994-2001)

Income Distribution for Wage Earners Around Top Kink (1994-2001)

(a) Married Women vs. Single Men

Taxable Income Distributions in 1994

LABOR SUPPLY RESPONSES VS. SHIFTING

- Does bunching reflect earnings responses or income shifting?
- Two mechanisms for income shifting
 - 1. Evasion: under-reporting of income to avoid higher tax
 - Kleven et al. (2009) audit study: no evasion in wage earnings
 - Could still have mis-reporting of non-wage income
 - \rightarrow Test: Bunching in wage earnings?
 - 2. Shift to nontaxable compensation (pension contributions)
 - \rightarrow Test: Bunching in pensions plus taxable income?

Distribution of Taxable Income Plus Pensions

PREDICTION 1: Small vs. Large Tax Changes

- We have already examined the larger, top tax kink
 - Top Bracket Cutoff: $\Delta log(NTR) \approx 30\%$
- Two sources of smaller tax variation:
 - Middle Bracket Cutoffs: $\Delta log(NTR) \approx 10\%$
 - Small Tax Reforms
- Now estimate observed elasticities from bunching at smaller kinks and small tax reforms

Middle Tax Kink: All Wage Earners, Taxable Income Distribution

Middle Tax Kink: All Wage Earners, Wage Earnings Distribution

Middle Tax Kink: Married Women, Taxable Income Distribution

PREDICTION 1: Small vs. Large Tax Changes

- Tax Reforms
 - Many small reforms during period we study: 4% change in net-of-tax wage on average
- Methodology: Gruber and Saez (2002)
 - Regress 2-year income change on 2-year change in netof-tax wage (1-MTR)
 - Instrument for actual change in (1-MTR) with simulated change holding fixed base year characteristics
 - Include 10-piece spline in income and various fixed effects

Observed Elasticity Estimates Using Small Tax Reforms

Dependent Variable: % Change in Labor Income:

Subgrou	ıp: All Wage	e Earners	Married Females	Married Fem. Professionals w/ High Exp.	Wage Earners
Variable:	(1)	(2)	(3)	(4)	(5)
% Change in NTR	-0.005 (0.003)	-0.007 (0.004)	0.002 (0.005)	0.001 (0.011)	-0.001 (0.003)
Labor Income Spline	Х	X	x	x	Х
Total Income Spline	X	X	x	x	x
Year Fixed Effects	x	x	x	x	x
Age Fixed Effects	x	x	x	x	x
Region Fixed Effects		x			
Occupation Fixed Effs.		x			
Gender/Married FE		x			
Sample Size	11,512,625	8,189,920	3,136,894	156,527	7,480,900

Observed Elasticity vs. Size of Tax Change

Log Change in Net-of-Tax Rate

Switchers from Top Tax to Middle Tax

Taxable Income Relative to Bracket Cutoff

PREDICTION 2: Firm Responses and Scope of Kinks

- Do tax incentives that affect a larger group of workers generate larger elasticities?
- Need variation in size of group affected by a tax change
 - Exploit variation in deductions and non-wage income across workers
 - Creates variation in effective location of top bracket cutoff (the labor income required to be just at the top bracket)
- We focus on two kinks:
 - Statutory top tax kink, faced by 60% of population
 - "Pension" kink, faced by 2.5% of population

Distribution of Net Deductions

Distribution of Net Deductions Given Deductions > DKr 20,000

PREDICTION 2: Firm Responses and Small vs. Large Groups

- Prediction 2.1: There is firm bunching at the statutory top tax cutoff
 - Firms should have excess propensity to structure jobs so that salaries are close to *statutory* top bracket cutoff because 60% of workers face that cutoff
 - Signature of firm bunching: bunching among people who do not face a given change in tax incentives
- Examine wage earnings distribution at occupation level because of prevalence of collective wage bargaining in Denmark
- Start with case study of one of the largest occupations: teachers

Wage Earnings Distribution: Teachers

Wage Earnings Relative to Statutory Kink (1000s DKR)

Frequency

Wage Earnings Distribution: Teachers with Deductions > DKr 20,000

Wage Earnings Relative to Statutory Kink (1000s DKR)

Modes of Wage Earnings Distributions Relative to Top Bracket Cutoff (1000s DKr)

Modes of Occupation-Level Wage Earnings Distributions

PREDICTION 2: Firm Responses and Small vs. Large Groups

- Prediction 2.1: There is firm bunching at the common kink
- Prediction 2.2: More firm bunching at more common kinks
 - Compare between statutory and pension kinks
 - Focus on group that faces *neither* kink:
 - Deductions between 7,500 and 25,000

Wage Earnings Around Pension Kink: Deductions > 20,000

Wage Earnings Relative to Pension Kink (1000s DKR)

Wage Earnings Around Pension Kink: Deductions Between 7,500 and 25,000

Wage Earnings Relative to Pension Kink (1000s DKR)

Wage Earnings Around Statutory Kink: Deductions Between 7,500 and 25,000

Wage Earnings Relative to Statutory Kink (1000s DKR)

PREDICTION 2: Firm Responses and Small vs. Large Groups

- Prediction 2.1: There is firm bunching at the common kink
- Prediction 2.2: More firm bunching at common kink
- Prediction 2.3: Larger observed elasticity at more common kinks
 - Bunchers set wage earnings + deductions = top kink
 - Need exogenous variation in deductions to isolate bunching through earnings margin
 - Identification: Split pop. into gender-age-married-year groups
 - Calculate fraction of each group with |net ded.| < 7500
 - Use this group average as a proxy for how "common" is an individual's level of deductions
 - Calculate elasticity estimate from bunching for these groups

Observed Elasticities vs. Scope of Tax Kink

Fraction of Group with |Net Deductions| < 7500

Dynamics: Movement with the Kink

- Why do individuals move with the kink despite search frictions?
 - Firm bunchers move with the kink because firm changes salaries for all workers
 - Individual bunchers do not move with the kink because of search costs
- \rightarrow Should see different individual bunchers at kink in each year
- Test by examining probability of tracking movement in kink
 - Define indicator for change in earnings from year *t* to *t*+2 within DKr 7,500 of change in top tax bracket from *t* to *t*+2

Dynamics of Earnings Around the Statutory Kink

Dynamics of Earnings around Pension Kink: Deductions > 20,000

PREDICTION 3: Correlation between Individual And Firm Bunching

- Intuitively, individual preferences drive the firm job distribution
- Test prediction by looking across occupations
 - Two-digit Danish ISCO codes

Correlation between Individual and Firm Bunching

Individual Bunching at Pension Kink

Female Wage Earners

Taxable Income Relative to Top Bracket Cutoff (1000s DKr)

Taxable Income Relative to Top Bracket Cutoff (1000s DKr)

Self-Employed

- Thus far, we have looked only at wage earners
- Self-employed do not face search frictions or hours constraints
 - Can more easily adjust earnings, both by changing labor supply and by reporting/intertemporal shifting
- Serve as a "placebo test" for our findings
 - Three predictions should not hold for the self-employed
 - Size and scope of tax change should not matter

Self-Employed: Taxable Income Distribution around Top Tax Cutoff

Taxable Income Relative to Top Bracket Cutoff (1000s DKr)

Self-Employed: Taxable Income Distribution around Middle Tax Cutoff

Taxable Income Relative to Top Bracket Cutoff (1000s DKr)

Self-Employment Income Around Statutory Kink: Deductions > 20,000

Self-Employment Income Relative to Statutory Top Tax Cutoff (1000s DKr)

Self-Employed: Observed Elasticities vs. Scope of Tax Changes

Fraction of Group with |Net Deductions| < 7500

Calibration

- What do our micro estimates tell us about the macro elasticity?
 - Ideal experiment: Infinite tax change for a very small group
- Instead, we partially identify our model to bound the magnitude of the attenuation of the elasticity
- Key intuition: ε controls the utility loss of deviating from optimum

$$u_i(h_i^*) - u_i(h) \simeq -\frac{1}{2} \frac{1}{\varepsilon} w h_i^* (\Delta \log h)^2$$

- Low ε implies very convex loss function, inflexible labor supply
- Upper bound on utility losses from search cost yield a lower bound on the structural elasticity

Calibration: Mechanics

- Calibrate tax system to match Danish economy
- Utility function: $u_i(c,h) = c \alpha_i^{-1/\varepsilon} \frac{h^{1+1/\varepsilon}}{1+1/\varepsilon}$
- Fit heterogeneous tastes to match income distribution away from the kink
- Parametric assumptions:

Distribution of new draw: $G_e(h'|h_i^*) = e \lim_{\lambda \to 0} N(h_i^*, \lambda) + (1 - e)N(h_i^*, \sigma)$ Search cost: $\Phi_i(e) = \phi \cdot c_i^* \cdot (1 + e^{\gamma})$

• Fit the remaining parameters $\{\phi, \sigma, \gamma, \varepsilon\}$ from the data

Excess Mass at the Top Kink vs. Search Costs

Excess Mass at the Middle and Top Kinks

Lower Bound on the Structural Elasticity

Simulated Equilibrium Income Distributions

Conclusion

- Search costs and institutional constraints attenuate short run behavioral responses substantially
 - Demonstrated the effects of size and scope on elasticity
 - Standard method of estimating elasticities using small tax reforms on *same data* yields close-to-zero elasticity estimate
- If we assume utility loss from frictions is less than 5% of optimal consumption, 0.25 is a lower bound on consumption
 - May help explain why macro cross-country comparisons find larger elasticities (Prescott 2004, Davis and Henrekson 2005)

Conclusion: Potential Policy Implications and Future Work

- Welfare consequences of tax policies can be very different in the presence of frictions
 - Suppose individuals have heterogeneous elasticities and must coordinate on hours choices

 \rightarrow long run efficiency cost of taxing one group of workers differs from that implied by their own elasticities

- Optimal taxation in the presence of frictions
- Effect of frictions on other behavioral responses and the interpretation of other quasi-experimental estimates

Survey Evidence on Knowledge About Middle and Top Tax Cutoffs

