The Effect of Housing on Portfolio Choice

Raj Chetty Harvard Adam Szeidl UC-Berkeley

April 2011

Introduction

- How does homeownership affect financial portfolios?
 - Linkages between housing and financial markets important for understanding macro fluctuations and asset pricing
- Theory and evidence reach conflicting conclusions
 - Theory predicts that housing lowers demand for risky assets (Grossman and Laroque 1990, Flavin and Yamashita 2003, Chetty and Szeidl 2007)
 - Empirical studies find no systematic relationship between housing and portfolios (Fratantoni 1998, Heaton and Lucas 2000, Yamashita 2003)

Overview

- We identify two factors that reconcile theory and evidence
- 1. It is critical to separate effects of mortgage debt and home equity to characterize effect of housing on portfolios
 - Mortgage debt reduces demand for stocks; home equity raises it
- 2. Endogeneity of housing choice biases previous empirical estimates
 - Ex: those who buy bigger houses may face less labor income risk
 - We use variation across states in house prices and land supply to generate exogenous variation in mortgages and home equity
- \rightarrow We find large impacts of housing on portfolios
 - Same order of magnitude as variation in income and wealth

Outline

- 1. Model and Estimating Equation
- 2. Identification Strategy
- 3. Results: Effect of Housing on Portfolios
- 4. Home Price Risk vs. Commitments

Stylized Model of Housing and Portfolio Choice

- Two period Merton-style portfolio model with housing
- Key features of housing: risk + illiquidity
 - Risk: σ_{PR} = covariance between home price and stock return
 - Illiquidity: with probability θ , housing cannot be adjusted in second period: $H_1 = H_0$
 - Parameter θ measures degree of illiquidity
 - If $\theta = 1$, housing is a pure commitment; if $\theta = 0$, fully adjustable

Stylized Model of Housing and Portfolio Choice

• At t = 1 agent chooses C_1 and H_1 to maximize utility

$$\frac{[C_1^{1-\mu}H_1^{\mu}]^{1-\gamma}}{1-\gamma}$$

subject to:

(1) budget constraint (which depends on realized returns)

(2) commitment constraint $H_1 = H_0$ (which binds with probability θ)

• At t = 0 agent has exogenous housing endowment H_0 and chooses stock share α to maximize expected utility:

$$E_0 \frac{\left[C_1^{1-\mu} H_1^{\mu}\right]^{1-\gamma}}{1-\gamma}$$

Portfolio Choice Rule

The optimal share of stocks out of liquid wealth at t = 0 is approximately

$$\alpha^* = C_1 \cdot \frac{\text{liquid wealth} + \text{labor income} + \text{home equity}}{\text{liquid wealth}} - \left[\theta C_2 + (1 - \theta)\sigma_{PR}C_3\right] \cdot \frac{\text{property value}}{\text{liquid wealth}}$$

with constants $C_1, C_2, C_3, \ge 0$.

Portfolio Choice Rule

The optimal share of stocks out of liquid wealth at t = 0 is approximately

 Higher total wealth increases stock share of liquid wealth with power utility

Portfolio Choice Rule

The optimal share of stocks out of liquid wealth at t = 0 is approximately

$$\alpha^* = C_1 \cdot \frac{\text{liquid wealth} + \text{labor income} + \text{home equity}}{\text{liquid wealth}} - [\theta C_2 + (1 - \theta)\sigma_{PR}C_3] \cdot \frac{\text{property value}}{\text{liquid wealth}}$$

- Home price risk ($\sigma_{PR} > 0$) and commitments ($\theta > 0$) reduce stock share
 - Home price risk $(\sigma_{PR} \uparrow)$: each dollar of housing leads to greater exposure to risk \rightarrow take less risk in financial portfolio
 - Commitments (θ ↑): more likely that money is tied up in fixed housing payments → greater risk aversion → take less risk

Estimating Equation

stock share_{*i*} = $\alpha + \beta_1$ property value_{*i*} + β_2 home equity_{*i*} + $\gamma X_i + \varepsilon_i$

- β_1 = effect of property value holding fixed home equity wealth
- β_2 = effect of home equity wealth holding fixed property value
- Error term ε captures unobserved determinants of portfolios
 - Ex: unobserved labor income risk
 - May be correlated with housing \rightarrow OLS estimates biased
- → Consistent estimation of β_1 and β_2 requires instruments for property value and home equity

2. Identification Strategy

Identification Strategy

- Three strategies to generate variation in mortgages and home equity
- **Strategy 1**: Use state-level repeat-sale home price indices as instruments for property values and home equity wealth
 - Two instruments:
 - 1. Average state house price in year in which portfolio is observed ("current year")
 - 2. Average state house price in year of home purchase
 - Consider hypothetical experiment with individuals who buy identical houses and only pay the interest on their mortgage

Real Housing Prices in California, 1975-2005

(a) Baseline **OFHEO Real House Price Index** (b) Higher mortgage, lower home equity **OFHEO Real House Price Index** Year

Real Housing Prices in California, 1975-2005

(a) Baseline **OFHEO Real House Price Index** (c) Higher home equity, same mortgage **OFHEO Real House Price Index** Year

Real Housing Prices in California, 1975-2005

Identification Strategy

- In practice, our implementation differs from hypothetical experiment in two ways:
 - 1. Include state, year of home purchase, current year, and age fixed effects in all specifications
 - Identify purely from within-state price fluctuations → comparing people in similar markets
 - Individuals buy smaller houses when prices are high and pay mortgage off → first-stage coeffs differ from 1-1 effects in example

Threats to Identification

- 1. Omitted variables
 - Fluctuations in house prices correlated with fluctuation in labor market conditions, which directly affect portfolios?
 - → Strategy 2: Use <u>national</u> house prices interacted with variation in land availability across states
- 2. Selection effects
 - People who buy houses when local house prices are high may have different risk preferences?
 - → Strategy 3: Use panel data, tracking changes in portfolio for same household over time

3. Results: Effect of Housing on Portfolios

Data

- Repeated cross-sections from Survey of Income and Program Participation spanning 1990 to 2004
- Observe portfolios, property value, mortgage debt, demographics, labor market variables
- OFHEO house price index data available starting in 1975; only include households who bought current house after 1975
- Sample size: 64,191 households

Summary Statistics for SIPP Analysis Sample

Variable	Mean	Median	Std. Deviation
	(1)	(2)	(3)
Property value	\$125,154	\$99,664	\$91,035
Home equity	\$72,264	\$48,860	\$73,887
Mortgage debt	\$52,890	\$42,937	\$51,490
Liquid wealth	\$39,642	\$5,574	\$543,523
Total wealth	\$173,094	\$94,643	\$588,136
Households holding stock	29.42%	0.00%	45.57%
Stock share (% of liq wlth)	16.09%	0.00%	30.47%

First Stage Regression Estimates

Dep. Var.:	Property Value	Home Equity	Mortgage Debt
	(1)	(2)	(3)
OFHEO state house price index in current year	\$377.7	\$329.8	\$47.87
	(9.49)	(7.98)	(5.21)
	[39.81]	[41.32]	[9.19]
OFHEO state house	-\$58.01	-\$184.3	\$126.3
of purchase	(12.26)	(10.31)	(6.73)
	[-4.73]	[-17.87]	[18.77]

All specs include state, current year, year of home purchase, and age fixed effects

	OLS	Two-	Stage Least	Two-step Tobit	
Dep. Var.:	Stock Share	Stock	Share	Stock Holder	Stock Share
	(1)	(2)	(3)	(4)	(5)
Property val. (x \$100K)	2.35% (0.26)	-8.89% (3.11)	-7.02% (2.89)	-14.0% (4.13)	-29.4% (9.48)
Home equity (x \$100K)	-2.66% (0.29)	9.42% (3.55)	4.94% (3.33)	10.8% (4.76)	26.8% (10.8)
Fixed Effects	x	x	x	X	X
Full Controls	x		x	x	x
Observations	61,881	63,807	61,881	61,881	61,881

Effect of Housing on Portfolios: Instrumental Variable Estimates

Fixed effects: state, current year, year of home purchase, and age

Full controls: liquid wealth spline, education, income, # of children, and the state unemployment rate in current year and in year of home purchase

Magnitudes

- \$100K increase in mortgage debt \rightarrow 7 pp lower stock share
- Standard deviation of mortgage debt: \$51.5K
- \rightarrow 1 std. dev. increase in mortgage reduces stock share by 3.5pp = 22%
- Comparisons:
 - 1 std dev. increase in wealth reduces stock share by 27%
 - Same order of magnitude as other factors considered e.g. by Calvet, Campbell, and Sodini (2007)

Robustness Checks

Dependent Variable:	Stock Share of Liquid Wealth				
Specification:	Logs	Shares	Wealth > \$100K		
	(1)	(2)	(3)		
Log prop value (x \$100K)	-30.5%				
	(13.8)				
Log home equity (x \$100K)	12.33%				
	(6.98)				
Prop val/liq wealth (x \$100K)		-7.59%			
		(4.19)			
Home eq/liq wealth (x \$100K)		6.99%			
		(4.43)			
Property value (x \$100K)			-12.7%		
			(5.57)		
Home equity (x \$100K)			12.2%		
			(6.95)		

All specs include state, current year, year of home purchase, and age fixed effects, and full set of controls.

Strategy 2: Land Supply Instruments

- Now address omitted variables correlated with local house prices
- Use measures of land supply elasticity by state predicted from land availability and use regulations (Saiz 2010)
- Interact state-level land supply elasticity with <u>national</u> house prices in year of purchase and current year to obtain instruments
 - Ex: California highly inelastic → house prices fluctuate highly with national demand
 - Kansas highly elastic \rightarrow house prices relatively stable
 - Family that bought a house in CA when national prices were high has more mortgage debt than a comparable family in KS

Land Supply Instruments: First Stage

		First Stage (OLS))
Dependent Variable:	Prop Val	Home Eq	Mortgage
	(1)	(2)	(3)
Land Supply Elasticity x	-\$183	-\$167	-\$16.0
U.S. OFHEO in current year	(6.62)	(5.58)	(3.62)
	[-27.6]	[-29.8]	[-4.43]
Land Supply Elasticity x	\$17.9	\$74.0	-\$56.1
U.S. OFHEO in year of purch.	(7.30)	(6.15)	(3.99)
	[2.45]	[12.0]	[-14.1]
Fixed Effects	X	X	X

All specs include state, current year, year of home purchase, and age fixed effects.

Effect of Housing on Portfolios: Land Supply IV Estimates

	Two-	quares	
Dependent Variable:	Stock	Stock Holder	
	(1)	(2)	(3)
Property value	-11.7%	-8.02%	-16.2%
(x \$100K)	(4.08)	(3.75)	(5.38)
Home Equity	13.9%	7.03%	13.8%
(x \$100K)	(4.85)	(4.60)	(6.60)
Fixed Effects	X	x	X
Full controls		x	X

Columns 1 includes state, current year, year of home purchase, and age FE's, column 2-3 includes full set of controls

Strategy 3: Panel Data

- Lastly, we address selection: do people who buy when prices are high have different risk preferences?
 - Examine *changes* in portfolios around home purchase
 - For 2,753 households in the sample, we observe portfolios one year before and one year after home purchase
 - Do individuals who buy bigger houses reduce stock share more?

Effect of Housing on Portfolios: Panel Estimates

Dependent Var.:	Δ stock share		Δ \$ liq. wealth	Δ \$ stocks	Δ \$ safe assets
	(1)	(2)	(3)	(4)	(5)
∆ Property value (x \$100K)	-3.02% (0.81)	-2.79% (0.87)	-\$28,955 (1528)	-\$26,505 (1438)	-\$2,451 (801)
Fixed Effects		х	X	x	X
Full Controls		х			
Observations	2,188	2,156	2,750	2,750	2,750

Columns 2-5 include state, age, and year FE's, column 2 includes full set of controls. All specs include control for change in total wealth.

4. House Price Risk vs. Commitments

House Price Risk or Commitments?

- House price risk mechanism: effect of housing on portfolios greater in more risky housing markets
 - → Test: is effect larger in states with higher covariance of house prices with stock returns?
- Commitment mechanism: effect of housing on portfolios greater for individual with higher adjustment costs
 - \rightarrow Test: proxy for adjustment costs by mean home tenure in state
 - Is effect larger for households in states with higher than average home tenure?

House Price Risk vs. Commitment Effects

	Price Risk	Interactions	Adj. Cost I	nteractions
Dep. Var.:	Stock Share	Stockholder	Stock Share	Stockholder
	(1)	(2)	(3)	(4)
Property value	-7.34%	-14.2%	-5.06%	-10.6%
(x \$100K)	(2.84)	(4.06)	(2.68)	(3.83)
Home equity	5.32%	11.1%	1.97%	5.99%
(x \$100K)	(3.28)	(4.69)	(3.19)	(4.55)
High risk x prop value	-1.08%	-1.00%		
(x \$100K)	(1.28)	(1.83)		
High risk x home equity	-0.01%	-0.68%		
(x \$100K)	(1.46)	(2.08)		
High adj cost x prop valu	е		-2.67%	-4.17%
(x \$100K)			(1.41)	(2.01)
High adj cost x home equ	uity		4.22%	6.74%
(x \$100K)			(1.43)	(2.04)

All columns include the full set of controls and fixed effects

Conclusion

- Housing has a substantial effect on financial portfolios
 - One std. dev. reduction in mortgage debt → demand for stocks rises by roughly 20%
- Practical implications
 - Mortgage debt/committed consumption may be a useful predictor of fluctuations in demand for risky assets and asset prices
 - Households should hold more conservative portfolios when holding a lot of commitments
- Future work: use the empirical estimates here to calibrate macro-finance models and predict the dynamics of asset prices and macroeconomy