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This paper studies the effect of interest rates on investment in an environment where firms make
irreversible investments with uncertain pay-offs. In this setting, changes in the interest rate affect both the
cost of capital and the cost of delaying investment to acquire information. These two forces combine to
generate an aggregate investment demand curve that is a backward-bending function of the interest rate.
At low rates, increasing the interest rate raises investment by increasing the cost of delay.

How does an increase in interest rates affect capital investment by firms? The answer to
this question has important implications for monetary and fiscal policies. The neoclassical theory
of investment gives a simple answer: increasing the interest rate reduces investment by raising
the cost of capital (Haavelmo, 1960; Jorgenson, 1963). This paper shows that the answer to this
question is different when firms make irreversible investments with uncertain pay-offs. In this
environment, investment is a backward-bending function of the interest rate.

To see the intuition, consider a pharmaceutical company deciding how quickly to proceed
with investments in operations to produce new drugs. The firm is uncertain about drugs that will
be successful and can acquire further information via R&D by delaying investment. The cost of
delaying investment is that the firm cannot retire its outstanding debt as quickly, raising its interest
expenses. Now consider how an increase in the interest rate will affect the firm’s behaviour. A
higher interest rate reduces the set of drugs that surpass the hurdle rate for investment, creating
the standard cost of capital effect that acts to reduce the scale of investment. But a higher interest
rate also makes the firm more eager to retire its debt quickly by investing immediately and earning
profits sooner. This second “timing effect” acts to raise current investment. I show that these two
opposing forces combine to generate a non-monotonic investment demand curve that is upward
sloping at low interest rates.

I analyse a dynamic model where a continuum of profit-maximizing firms make binary
investment decisions and can observe a noisy signal about the parameters that control pay-offs
by postponing investment. The model builds on the large literature on irreversible investment and
real options (e.g. Arrow, 1968; Bertola and Caballero, 1994; Dixit and Pindyck, 1994; Abel and
Eberly, 1996). In the model analysed here, expected profits grow at a rate g > 0 when firms delay
investment because the information acquired by delay reduces the probability of investing in an
unsuccessful venture. Profits earned in subsequent periods are discounted at the interest rate, r .
Therefore, firms invest immediately only if the expected profit from investment is positive and the
expected growth in profits from delaying (g) is less than the interest rate. The backward-bending
shape of the aggregate investment demand curve, I (r), arises from this optimality condition. If
r is low, g is likely to exceed r, compelling many firms to delay investment rather than investing

1. This paper is based on my undergraduate thesis at Harvard.
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68 REVIEW OF ECONOMIC STUDIES

in period 1. On the other hand, when r is high, the expected return to investment is negative
for many firms, deterring them from investing in period 1. Consequently, investment is maxim-
ized at an intermediate r∗ > 0, and I (r) is upward sloping from 0 to r∗ and downward sloping
above r∗.

A useful analogy in understanding this result is to interpret investment as the decision to cut
a growing tree. The optimal time to cut a tree growing at a rate g(t) that diminishes over time is
when g(t) = r . When r is very low, trees that have already been planted are cut after a long time,
reducing current investment. When r is very high, fewer trees are planted to begin with, because
the return to investment is low, reducing the scale of investment. Hence, investment is low both
when r is low and high. This logic results in a backward-bending I (r) curve in a broad set of
models where firms value the option to delay.2

The backward-bending property of the investment demand curve is robust to several gener-
alizations of the basic model. First, the result holds when each firm chooses a scale of investment
in each period. The aggregate economy in the extensive-margin model is isomorphic to a single
firm making scale choices. Second, if firms have additional margins of choice beyond scale, such
as choices about the composition of investment, the backward-bending shape that arises from
learning effects is reinforced. For instance, if construction is cheaper when firms take a longer
time to build (as in Alchian, 1959), they have an incentive to switch to slower building tech-
nologies when interest rates are low, reducing aggregate investment for reasons independent of
learning.

The main result also holds in an equilibrium model of investment with competitive firms.
To analyse the effects of competition, I extend the basic model to allow output prices and profit
rates to be determined endogenously by market-clearing and free-entry conditions. In this envir-
onment, firms have a stronger incentive to invest early and beat the competition. However, if
firms can earn sufficiently high quasi-rents (producer surplus) from investment in the short run,
the equilibrium level of investment remains a backward-bending function of r . Intuitively, as
long as the marginal firm values the option to delay in equilibrium—a condition that holds if
identical competitors cannot enter and bid away all profits instantly—the interest rate continues
to affect both the cost of delay and the cost of capital, thereby generating two opposing forces on
investment demand in equilibrium.

The relationship between I and r derived here is of interest for two reasons. First, several
studies have documented the importance of irreversibilities and the option to delay in firm-level
investment behaviour (e.g. Caballero, Engel and Haltiwanger, 1995; Doms and Dunne, 1998;
Caballero, 1999; Cooper and Haltiwanger, 2006). Analysing the relationship between interest
rates and investment in such models is, therefore, important from the point of view of economic
theory as well as macroeconomic policy. Second, the non-monotonic relationship is interesting
from an empirical perspective, because several econometric studies have searched for a negative
relationship between exogenous changes in the interest rate and aggregate investment demand
without success (see Chirinko, 1993a,b for a review). This paper proposes a model that could
explain the lack of a clear, monotonic relationship between I and r , at least in certain high-risk
sectors of the economy where choices about timing of investment are important.

A natural question in this regard is whether the timing effects that generate the non-
monotonic investment curve are empirically important. While empirical analysis is outside the
scope of this paper, the learning structure of the model yields many predictions that could be
tested in future work. For example, the model predicts that an increase in r is more likely to
increase investment in sectors or times when the potential to learn is greater, that is, when signals

2. Capozza and Li (1994) and Jovanovic and Rousseau (2001, 2004) give related results on the effect of interest
rates on land development and Initial Public Offerings (IPOs).
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about future pay-offs are more informative and the variance of pay-offs is large. Examples that
satisfy these conditions include start-ups or small businesses, especially in high-tech fields. The
model also yields several additional testable predictions related to short-run vs. long-run changes
in interest rates and investment and the effect of interest rates on observed profit rates.

The remainder of the paper is organized as follows. In the next section, I set up the basic
firm-level model, solve for optimal investment behaviour, and aggregate the model to derive an
investment demand curve. The main backward-bending investment result is given in Section 2.
Section 3 generalizes the result to richer environments, including competitive equilibrium. Sec-
tion 4 derives testable implications of the model. The final section offers concluding remarks. All
proofs are given in the Appendix.

1. A MODEL OF INVESTMENT BY LEARNING FIRMS

I analyse a discrete-time learning model where firms making irreversible investment decisions
maximize profits and are residual claimants in all states of the world. Since the analysis focuses
on characterizing the shape of the investment demand curve, the interest rate is taken as exo-
genous throughout the paper.

I make two simplifying assumptions in the basic model, which are subsequently relaxed in
Section 3. First, I assume that firms only decide whether to invest or not (the scale of investment
is not flexible). Second, I ignore competitive forces by assuming that profit rates are fixed and
unaffected by the behaviour of other firms in the economy. The basic model can be viewed as
describing a firm that has a patent on an idea (e.g. a chemical compound) and is deciding whether
to market its innovation (e.g. a new drug) by building a factory.

1.1. Structure and assumptions

Suppose a manager is deciding whether to invest in a new plant that can be built at cost C .
The revenues from this investment are uncertain because demand for the firm’s product is not
known. There are two states of the world: the low-demand state (µ = 0) and the high-demand
state (µ = 1).3 Let Rµ denote total revenue from the project in state µ, and assume R1 > R0. To
eliminate degenerate cases, assume that investment is unprofitable in the bad state ∀r > 0, that
is, R0 < C .

Investing in the plant allows the firm to start production in the next period, so revenue starts
accruing one period after the investment is made. The decision to invest is irreversible—once the
plant is built, it cannot be sold at any price and the firm does not make any further decisions.4

Let λ0 = P(µ = 1) denote the manager’s prior belief that the project will succeed. He can
gain information about the state µ by delaying his investment decision and observing a signal
z, for example, by conducting research. In the low-demand state, the signal z is drawn from a
distribution f (z); in the high-demand state, it is drawn from a distribution g(z):

µ = 0 ⇒ z ∼ f (z) and µ = 1 ⇒ z ∼ g(z).

By postponing his decision, the manager can update his estimate of the probability of
success to λ1 = P(µ = 1 | z) after observing a realization of z and thereby make a more informed

3. The two-state assumption simplifies the exposition, but the results hold with a continuous state space.
4. Complete irreversibility is not essential. If there were a non-zero cost to undoing an investment, as in Abel

and Eberly (1996), the firm would still be reluctant to commit resources to a venture of uncertain value. But if the
investment decision were fully reversible and all money put in could be recovered, there would be no reason not to invest
immediately, and the model would collapse to the neoclassical framework.
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decision. The cost of this reduction in uncertainty is that a delayed investment yields revenues
one period later, which have lower present value. I defer consideration of additional costs of
delay, such as the cost of performing research necessary to obtain the signal or the loss of profits
due to competition until Section 3.

The firm’s investment opportunity is available for T periods. In the terminal period T , the
firm must decide either to invest immediately or reject the project. In all periods 1 ≤ t < T , the
firm chooses between investing immediately (i) or delaying its decision and learning (l). Let
πt (µ) denote the net pay-off in period 1 in dollars from investing in period t in state µ:

πt (µ) = 1

(1+ r)t−1

{
Rµ

1+ r
−C

}
. (1)

To simplify the discussion below, I focus on a two-period model (T = 2). However, all the
results are proved in the Appendix for general T , including the limiting case of T = ∞.

1.2. Optimal investment rule

The optimal action in each period can be computed using backwards induction. To reduce nota-
tion, assume that the signal z is a scalar and that the likelihood ratio g(z)

f (z) is monotonically and
continuously increasing in z.5 Let V (i) denote the expected value of investing in period 1 and
V (l) the expected value of delay.

Lemma 1. In period 2, the firm invests iff z > z∗ where z∗ satisfies

g(z∗)
f (z∗)

= 1−λ0

λ0

C − R0/(1+ r)

R1/(1+ r)−C
. (2)

In period 1, the firm invests iff

V (i) = λ0

(
R1

1+ r
−C

)
+ (1−λ0)

(
R0

1+ r
−C

)

> V (l) = 1

1+ r

{
λ0β(z∗)

(
R1

1+ r
−C

)
+ (1−λ0)α(z∗)

(
R0

1+ r
−C

)}
, (3)

where β(z∗) ≡ ∫ ∞
z∗ g(z)dz and α(z∗) ≡ ∫ ∞

z∗ f (z)dz.

The intuition for this result is as follows. In period 2, the firm chooses between investing or
rejecting the project. The firm invests if the expected profit from investment is positive given the
updated value of P(µ = 1) after observing signal z. The firm therefore invests in period 2 if the
likelihood that the observed demand z came from the good distribution g is high, that is, if g(z)

f (z)

exceeds some threshold value. If g(z)
f (z) is monotonic, there is a unique threshold z∗ determined

by the prior λ0 and the profit–loss ratio such that investment is optimal iff z > z∗, as shown
in Figure 1. The cut-off z∗ is computed as in (2), so that the expected profit from investing in
period 2 conditional on observing a signal z = z∗ that is 0. Intuitively, at the optimal threshold,
the manager should be indifferent between investing and not investing in period 2. If he were not,
there would either be a region of the signal state space where he is investing and earning negative
expected profits or one where he is not investing and could have earned positive expected profits.

5. This monotonic likelihood ratio property holds for many distributions, including all one-parameter Natural
Exponential Families.
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Notes: Period 2 investment decision as a function of signal realization z. Optimal policy is a
likelihood ratio test that results in a threshold rule: invest if z > z∗(λ0). Power of test
(β(z∗)) is area under g(z) distribution to the right of z∗ and type 1 error rate (a(z∗)) is
corresponding area under f (z) distribution.

FIGURE 1

Period 2 investment decision

Note that the firm’s period 2 decision rule is formally equivalent to a likelihood ratio hypo-
thesis test. The test has power β(z∗), and type 1 error rate α(z∗). In the limiting case of noiseless
signals, β(x) = 1 and α(x) = 0 for all x . Under this decision rule, the firm invests in period 2
with probability β when µ = 1 and probability α when µ = 0.

In period 1, the firm chooses between investing or delaying and learning. The pay-off to
investing is the expected profit in period 1, where the weight in the expectation is given by the
prior belief, λ0. The pay-off to learning, V (l), is also a weighted average of profits in each state,
but there are two changes in the formula. First, the relevant pay-off outcomes are π2 instead of
π1—revenue is discounted more steeply, because it is earned one period later. Second, the weights
in the profit expression are multiplied by the factors β(z∗) and α(z∗). The term corresponding
to the good state, π2(1), decreases by the weight β(z∗) < 1 because of the chance of rejecting
the project when it is profitable. The test’s benefit is that α(z∗) < 1, placing less weight on the
negative term corresponding to the bad state. In this model, the sole benefit of delaying investment
is to reduce the probability of undertaking an unprofitable venture.

The period 1 investment rule is closely linked to the results of more general real options and
optimal stopping models. To see this, let g denote the expected growth rate of profits by delaying,
which is defined as the undiscounted expected profit in period 2 divided by the expected profit in
period 1 (minus 1):

g = {λ0β(z∗)((R1/(1+ r))−C)+ (1−λ0)α(z∗)((R0/(1+ r))−C)}
λ0((R1/(1+ r))−C)+ (1+λ0)((R0(1+ r))−C)

. (4)

Then we can rewrite the period 1 optimality condition for investment given in Lemma 1 as

V (i) > 0 and r > g. (5)

This condition shows that it is optimal to invest immediately if (a) the expected profit from
investment is positive and (b) the growth rate of profits from delaying, g, is smaller than the

c© 2007 The Review of Economic Studies Limited
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interest rate, r . If (b) is not satisfied, it is optimal to delay since doing so yields a higher expected
rate of return than the interest cost. This condition mirrors standard results on optimal tree-cutting
problems. It is optimal to cut a growing tree when the rate of return on the best alternative (r ) ex-
ceeds the rate at which the tree grows (g). In the present model, the act of investment is equivalent
to the act of cutting a tree, and the tree “grows” over time as firms acquire information and have
higher expected profits.

The intuition embodied in (5) applies to a wide range of irreversible investment models
(Dixit and Pindyck, 1994). Since the results below follow directly from this optimality condition,
they hold in a general class of models and do not rely on the particular modelling details used
here.

The two parts of equation (5) drive the two effects of interest rate changes on investment.
The first part shows that a reduction in r makes individuals plant more trees (increasing the scale
of investment), because more projects have positive expected value. The second part shows that
a reduction in r also causes investors to cut trees later (postpone investment), because it is more
likely that g > r . I show below that these two opposing forces combine to make investment a
non-monotonic function of r .

1.3. Aggregation

To obtain a smooth aggregate investment demand curve, consider an economy populated by a
continuum of learning firms with heterogeneous prior probabilities of success (λ0’s). Assume that
the density of λ0,dη(λ0) is continuous and places non-zero weight on all λ0 ∈ [0,1].6 Revenues
from investment in each state and the learning technology are identical across firms. Assume
for now that each firm’s profit realization is independent of other firms’ outcomes, so firms can
ignore the behaviour of other firms when making investment decisions.

Under these assumptions, each firm follows Lemma 1 in making investment decisions. This
allows us to characterize the decisions of all firms in the economy by a single threshold value λ∗

0
that determines who invests in period 1 and who does not:

Lemma 2. There is a unique λ∗
0 at which the value of investing equals that of postponing.

In period 1, firms with λ0 < λ∗
0 delay their investment decision. Firms with λ0 ≥ λ∗

0 invest in
period 1.

Investment behaviour in the economy exhibits a simple pattern, as shown in Figure 2. Con-
fident firms (λ0 high) do not want to forego profits by delaying and invest immediately. The
remaining firms, who are less certain about whether they have a profitable project, choose to wait
and decide what to do in the next period based on the information they observe. The threshold λ∗

0
thus determines the scale of investment in the economy.

It follows from Lemma 2 that aggregate period 1 investment is

I =
1∫

λ∗
0

Cdη(λ0). (6)

6. The assumption that all firms start their decision problem in period 1 is not restrictive, because the current belief
λ0 is a sufficient statistic for any previously acquired information. Firms that acquire information prior to period 1 simply
have different values of λ0.
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Notes: Value functions and period 1 investment behaviour as a function of prior λ0. V (l) is
value of delay and V (i) is value of immediate investment. Firms with prior above
threshold value λ∗

0 invest in period 1.

FIGURE 2

Investment behaviour in the economy

2. INTEREST RATES AND INVESTMENT DEMAND

The following proposition characterizes the relationship between aggregate investment demand
and the interest rate.

Proposition 1. Investment demand is a backward-bending function of the interest rate.

(i) I (r = 0) = 0 and limr→0
∂ I
∂r (r) = +∞

(ii) r∗ ≡ argmaxr I (r) > 0 and r < r∗ ⇒ ∂ I
∂r > 0 and r > r∗ ⇒ ∂ I

∂r ≤ 0.7

This proposition shows that I (r) always has an upward-sloping segment from r = 0 to
r = r∗ > 0 followed by a downward-sloping segment thereafter. To see the intuition, first observe
that if r = 0, no one invests in the first period. Firms certain of success (λ0 = 1) are indiffer-
ent between postponing and investing today, and all firms with lower priors strictly prefer delay
(Lemma 2). Hence, I (r = 0) = 0: there is no reason to forego the free information one gets
by waiting and learning if r = 0. Increasing r from r = 0 raises the cost of learning by delay-
ing and increases aggregate investment by making the most confident firms invest immediately.
At the other extreme, if r > R1

C − 1, projects are unprofitable in both states for all firms, and
hence no one invests. Since no firms invest when r is low or high, it follows that I (r) is non-
monotonic.

To understand why the I (r) curve is always backward bending, consider a firm with prior
λ0 such that investment in period 1 is optimal for some r > 0.8 Let us examine how the firm’s
pay-off to investment relative to delay, V (i ; λ0)− V (l; λ0), varies with respect to r . The expres-
sion ∂{V (i)−V (l)}

∂r can be decomposed into net present value (NPV) ( ∂V (i)
∂r ) and learning (− ∂V (l)

∂r )

7. More precisely, ∂ I
∂r = 0 for r >

R1
C −1, the uninteresting case in which the interest rate is so high that investing

is suboptimal even in the good state. Investment demand is strictly downward sloping ( ∂ I
∂r < 0) for all r ∈ (r∗,

R1
C −1).

8. Such firms exist: for λ0 = 1, V (i ; λ0) > V (l; λ0) ∀r > 0 ⇒ ∃λ′
0 < 1 s.t. V (i,λ′

0) > V (l; λ′
0) for some r > 0 by

continuity. Note that firms who never invest at any r do not affect the shape of I (r).

c© 2007 The Review of Economic Studies Limited
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effects:
∂{V (i)− V (l)}

∂r
= NPV+ L , (7)

where

NPV = −1

(1+ r)2
{λ0 R1 + (1−λ0)R0} < 0

L = λ0β(z∗)
{

2R1

(1+ r)3
− C

(1+ r)2

}
+ (1−λ0)α(z∗)

{
2R0

(1+ r)3
− C

(1+ r)2

}
> 0. (8)

The NPV effect makes an increase in r reduce the value of immediate investment, as in
neoclassical investment models. The learning effect arises because the value of delaying is also
affected by r . Via the L effect, a higher r reduces V (l), creating a force that counteracts the
conventional effect by making immediate investment more attractive.

The magnitude of L(r) diminishes relative to the magnitude of NPV(r) as r gets larger.
Hence, for any given λ0, there is exactly one value r at which NPV(r) = −L(r). This implies
that for a given firm, V (i ; λ0) and V (l; λ0) intersect for at most two values of r , say rL(λ0)
and rU (λ0). The firm-level investment demand curves thus all have the same form: invest iff
rL(λ0) ≤ r ≤ rU (λ0), as shown in Figure 3(a). The source of the non-monotonicity with respect
to r is that a small increase in r causes V (l) to fall more than V (i) at rL(λ0), increasing period 1
investment by firm λ0. In contrast, an increase in r causes V (l) to fall less than V (i) at rU (λ0),
reducing the level of investment by the same firm.

The cut-off rL(λ0) is decreasing in λ0, while rU (λ0) is increasing in λ0. More confident
firms have a larger interval of interest rates for which immediate investment is optimal. At the
extremes, investors with λ0 = 1 strictly prefer i for any r ∈ (0, R1

C − 1), whereas investors with
λ0 = 0 prefer not to invest ∀r > 0. There is exactly one value λ′

0 such that rL(λ′
0) = rU (λ′

0). For
this firm, V (i ; λ0) and V (l; λ0) are tangent at r∗ = rL(λ′

0), as shown in Figure 3(b). The λ′
0 firm

invests only if r = r∗.
Summing the individual non-monotonic step functions horizontally generates a smooth ag-

gregate investment demand curve. Aggregate investment demand is a backward-bending function
of r because the firm-level investment demand curves are non-monotonic step functions that are
nested within each other as λ0 falls, as shown in Figure 3(c). The slope of I (r) approaches +∞
as r tends to 0 because the most confident investors have little to gain by learning and imme-
diately jump into the market when a small cost of delay is introduced. I (r) is maximized at r∗
because all firms who have λ0 > λ′

0 also invest at r∗ by Lemma 2.
One concern with Proposition 1 is that the prediction that investment falls to 0 at low in-

terest rates is empirically implausible. This prediction is an artefact of the stylized nature of the
model. Two limitations of the model are important in this respect. First, in practice, some types of
investment—such as replacement of depreciating machines—involve virtually no learning. This
component of investment has a conventional downward-sloping relationship with r . In a model
that allows for both non-learning and learning investment, total investment is positive at r = 0.
Nonetheless, total investment remains upward sloping at low r because limr→0

∂ I
∂r (r) = +∞ for

the learning component. Second, even within the learning component, there are other non-interest
costs to delay, such as research expenditures and loss of profits due to competition that are ig-
nored in the model. I show in Section 3 that when these other costs are incorporated, I (r = 0) > 0,
but I (r) remains backward bending provided that these costs are not too large.

Note that in contrast with investment demand, the value of the firm always rises as r falls,
because both V (i) and V (l) rise when r falls. Lower interest rates essentially lead to more in-
vestment in information rather than physical capital such as equipment and structures, ultimately
yielding higher profit rates. If the measure of “investment” is broadened to include the value of

c© 2007 The Review of Economic Studies Limited



CHETTY INTEREST RATES AND BACKWARD-BENDING INVESTMENT 75

Notes: Firms compare V (l) and V (i) for each value of r (a, b), and compute their investment
demands as functions of r (c). Summing these step functions horizontally yields I (r)

(d). Parameters used in simulation are the same as those in Figure 2.

FIGURE 3

The interest rate and period 1 investment

information, the conventional prediction that higher interest rates lower investment still holds.
However, in so far as physical investment (as measured in balance sheets and national accounts)
and information acquisition have different macroeconomic consequences, the non-monotonic
effect of r on physical investment is of interest.9

3. EXTENSIONS

3.1. Scale choice

In the baseline model, each firm had a limited choice set: invest $C in either period 1 or 2. In
practice, firms have some flexibility over their scale of investment in each period. To incorporate
such scale choice, consider a firm that can set its level of investment in periods 1 and 2, I1 and I2,
at any positive value. The restriction that investment must be positive captures irreversibility.10

There are two states of the world (µ = 0,1), which differ in the price at which the output can
be sold (pµ). In state µ, an investment of I1 in period 1 generates revenue of pµF(I1) in period
2. An investment of I2 in period 2 generates revenue of pµ[F(I1 + I2) − F(I1)] in period 3.

9. For example, if firms delay construction because r is low, building permits fall. In so far as building permits are
viewed as an indicator of the economy’s strength, this change in behaviour has relevance for economic policy.

10. In this model, downward adjustment of the capital stock has infinite cost, but upward adjustment (through
additional investment) is costless. If upward adjustment is costly as well, the optimal investment rule differs, but I1(r)
remains non-monotonic.
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The marginal return to investment is diminishing: F(I ) is concave. To eliminate degeneracies,
assume that p0 F ′(0) < 1, so that investment in the bad state is always unprofitable.

The information revelation structure of the model is the same as in Section 2: a signal z is
observed at the end of period 1 and beliefs about µ are then updated. Let λ0 denote the ex ante
probability that µ = 1. We can now generalize Proposition 1:

Proposition 2. I1(r) is non-monotonic when firms choose scale:

I1(r = 0) = 0 and ∃r1 > r0 s.t. I (r1) > I (r0).

The proof of this result parallels that for the extensive-margin case. When r = 0, total
revenue is pµF(I1 + I2). Since there is no cost to delay in this case, there is no reason to invest
immediately. Firms therefore set I1(r = 0) = 0. Similarly, if r is sufficiently high, investment is
unprofitable, and I1 is again 0. Hence, investment demand is a non-monotonic function of r .

To understand why introducing scale choice does not change the main result, consider the
following alternative model of scale choice. Suppose a firm has many projects in which it can
invest, some of which have higher probabilities of success than others. The firm must make a
binary decision about each project, but can choose the total number of projects to take up. As
the firm raises investment, it is forced to choose projects with lower probabilities of success,
making its profits a concave function of investment, as in the continuous scale-choice model.
Since each project decision is made independently, investment decisions are determined exactly
as in Lemma 2. Consequently, the total scale of investment by this firm, I f(r), has the same form
as equation (6), the expression for aggregate investment in the original model where several small
firms make investment decisions on different projects. Firms are divisible, so total investment
is identical if many small firms make decisions about one project each or one big firm makes
investment decisions on several projects.

Since I f(r) has the same form as (6), it follows that it also has the same backward-bending
shape. This example shows that the original aggregate model with extensive-margin choices at the
microeconomic level effectively contained a scale choice in the aggregate. In this sense, the basic
model already contained the scale choice (“plant fewer trees”) effect of increasing r . Modelling
scale choice at the firm level instead of the aggregate level does not change the result.

3.2. Investment composition decisions

Firms can make many choices about projects beyond scale. For instance, they may choose tech-
nologies for construction or speed of delivery to market. To see how these “investment compo-
sition” decisions affect the shape of I (r), suppose firms can choose between two construction
methods, A and B. Method A requires the use of expensive building materials and is fast (e.g.
one year to build). Method B involves less real investment but is slower (e.g. two years to build).
At r = 0, time is costless, so the firm will use only method B. When r is very high, time is
precious, and the firm will use only method A. For intermediate interest rates, the firm will use a
combination of these two methods. Since method A involves more real investment than method
B, the composition effect, holding scale fixed, makes I (r) strictly upward sloping. As the scale
effect dominates at high r—for sufficiently high r , it is best not to invest with any technology—
I (r) is downward sloping for high r when scale is endogenous. However, composition effects
lengthen the upward-sloping segment of I (r) and raise the investment-maximizing r∗ generated
by the basic model with only learning effects.

In the tree-cutting and planting analogy of Section 2, composition choices are the kinds of
trees one plants (oak or apple). Increases in the interest rate have three effects in this environment:
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(1) plant fewer trees; (2) cut trees later; and (3) plant trees that mature later. Effects 2 and 3 act
to make I (r) upward sloping at low interest rates. Generalizing the model to allow composition
choices thus reinforces the main result and illustrates that learning is not the only reason that
firms may reduce investment in response to an interest rate cut.

3.3. Competitive equilibrium

The analysis thus far has assumed that investors enjoy rents from investments and do not face
competitive pressures. While patent and copyright protection limit competition in some cases, in
practice, most firms face some competition in the long run that bids away rents.

To model competition among learning firms, consider a market with a continuum of firms
that have different product concepts (e.g. different pain relievers). Each firm makes a binary
decision to invest in a plant that costs C . Investment in period t yields revenues in period
t + 1. A firm that invests in period t ends up with either a good product that sells at price pt

in period t + 1 or a bad product that is worthless (sells for 0). Firms’ outcomes are independ-
ent: the probability that any single firm succeeds is unrelated to the other firms’ behaviour and
outcomes.

Each firm enters period 1 with a prior probability of having a good product of λ0. As in the
basic model, there is a smooth distribution of λ0’s to capture heterogeneous expectations. Firms
that delay investment receive independent signals about whether their products are good at the
end of period 1, which are used to update beliefs. In the second period, firms choose between
investing immediately or rejecting the project (delaying again is not possible).

The price pt is determined endogenously to equate cumulative supply with demand in equi-
librium. Let It ∈ [0,1] denote aggregate investment in period t , defined as the measure of firms
that invest in period t . Let I c

t denote cumulative investment up to and including period t . The
inverse-demand function for good products sold for the first time in period t is given by an ar-
bitrary downward-sloping function p(I c

t ).11 This implies that the price of the product falls over

time (p1 > p2). To eliminate degenerate cases, assume that
p(I c

2 =0)

1+r > C and
p(I c

2 =1)

1+r < C , so that
there exist firms on the margin of investing in period 2.

To model free entry in the long run, assume that profits are bid to 0 after the first period
in which a particular product is sold. After this point, other firms can replicate the technology,
forcing the original firm to sell at marginal cost. A firm that invests in period 1 thus has a chance
to earn money in period 2 only; firms that invest in period 2 can earn money in period 3 only. The
one-period lag captures adjustment costs, which prevent competitors from bidding away infra-
marginal quasi-rents (short-run surplus) by selling an identical product instantly.12 The pharma-
ceutical industry is a concrete example of this type of competitive structure: first-movers can
earn large profits in the short run (e.g. Aspirin), while subsequent firms with slightly different
products can also earn temporary rents (Tylenol, Advil) until their profits are also bid away by
generics who replicate the original products.

In this setting, the expected profit from immediate investment (i) and learning by delaying
(l) for a firm with prior λ0 in period 1 is

V (i,λ0) = λ0 p1

1+ r
−C

V (l,λ0) = 1

1+ r

{
λ0β(z∗)

(
p2

1+ r
−C

)
+ (1−λ0)α(z∗)(−C)

}
.

11. This is equivalent to assuming that prices depend on the supply of good products instead of total investment
because the supply of good products is a monotonic function of I c

t .
12. This model of competition parallels neoclassical competitive production theory, where producer surplus is

positive in the short run and falls to 0 in the long run.
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An equilibrium is defined by two conditions: (1) markets clear in each period and (2) all
firms optimize—those with V (i,λ0) > V (l,λ0) at the market price vector (p1, p2) invest in
period 1 and those who delay and have positive expected profits in period 2 invest in period
2. The following lemma establishes existence and uniqueness of equilibrium in this model and
characterizes investment behaviour in equilibrium.

Lemma 3. In period 1 equilibrium, there is a unique price vector (p1, p2) and threshold
λ∗

0 at which

V (i,λ∗
0) = V (l,λ∗

0) > 0.

Firms with λ0 < λ∗
0 delay their investment decision.

Firms with λ0 ≥ λ∗
0 invest in period 1.

The key point of Lemma 3 is that the marginal investor in period 1 equilibrium earns strictly
positive expected profits from immediate investment. Unlike in the neoclassical model of com-
petition, profits are not driven to 0 at the margin in the period 1 equilibrium. To understand this
result, first consider period 2 decisions. Since there is no further option to delay, a firm invests
in period 2 if its expected return to investment at the market-clearing price exceeds the cost of
investment. Consequently, there is a threshold value λ∗

1 such that only firms with updated prob-
abilities of success λ1 > λ∗

1 invest in period 2. The marginal firm with belief λ∗
1 earns zero profits

in equilibrium. But the infra-marginal firms who have higher λ1’s earn positive profits in expec-
tation. These firms are able to earn temporary quasi-rents despite being in a competitive market
because they have a better technology (such as a better chemical compound or human capital)
that cannot be instantly replicated by other firms.

Now turn to period 1 behaviour. There is some probability that the marginal investor in
period 1 will be one of the infra-marginal investors in period 2. Hence the value of postponing
must be strictly positive for this indifferent firm. The reason that expected profits are not driven
to 0 at the margin in the period 1 equilibrium is again heterogeneity in success probabilities.
Other firms are free to enter the market and try to capture the positive rents, but they have lower
probabilities of success than the indifferent firm and therefore can earn higher expected profits
by delaying.

Since the option value of delaying is positive for the marginal period 1 investor in equili-
brium, changes in r continue to affect that firm’s behaviour via both an NPV and learning effect,
as in the basic model. The existence of these two opposing forces suggests that period 1 invest-
ment demand, I1(r), may be non-monotonic in competitive equilibrium. This result cannot be
established using the same proof as in the basic model because there is now a non-interest cost to
waiting, so I1(r = 0) > 0.13 Even at a zero interest rate, the most confident (highest λ0) firms will
invest immediately to take advantage of the high initial price they can extract. Nonetheless, one
can obtain a simple condition under which the investment demand curve in this model is upward
sloping at low r .

Proposition 3. Let λ∗
0 and λ∗

1 denote the success probabilities of the marginal (indifferent)
investors in periods 1 and 2, respectively. Then ∂ I1/∂r(r = 0) > 0 if at r = 0,

λ∗
0β(λ∗

0) > λ∗
1. (9)

13. However, at very high r , it remains the case that investment is suboptimal for all firms, so aggregate investment
falls to 0 as r → ∞. Hence, I (r) must have a downward-sloping segment in the competitive model.
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This condition requires that the marginal investor in period 1 have a significantly higher success
probability than the marginal investor in period 2. Since the marginal investor in period 2 earns
zero profits in equilibrium, this condition guarantees that the marginal investor in period 1 can
gain substantial rents by delaying and investing in period 2, since he is likely to be an infra-
marginal investor in that period.

To understand why I (r) is non-monotonic when (9) is satisfied, consider two extreme
examples. First, suppose signals are perfect, so that β(λ∗

0) = 1. In this case, the distribution
of λ1 is a degenerate two-point distribution, and if supply is sufficiently large, price is driven
down to p2 = C for those who invest in the second period. Since firms cannot earn any profits
if they delay investment, the option to delay is worthless. The model collapses into the conven-
tional single-period model, where r has only a conventional cost-of-capital (scale) effect and
I (r) is strictly downward sloping. Correspondingly (9) does not hold in this case because λ∗

1 = 1.
This example illustrates that the “timing effect” of r can emerge only if delaying is a real option
that has value in equilibrium. Condition (9) essentially guarantees that the option to delay has
value.

Now consider a second example, where signals are imperfect. Suppose the demand curve
for the good product is

pt = h(I c
t )+ K

where K is a constant and ∂h/∂ I c
t < 0 so that demand is downward sloping. Suppose the cost of

investment is

C = C0 + 1

2
K .

In this example, K controls the variance of pay-offs: high K yields higher profits in the good
state, but a bigger loss in the bad state. The following result establishes that (9) holds when
pay-off uncertainty is sufficiently high, implying that I (r) is upward sloping at low r :

Corollary to Proposition 3. For K sufficiently large, ∂ I/∂r(r = 0) > 0.

The mechanics underlying this result are straightforward. As K becomes large, the threshold
for investment in period 2 approaches λ∗

1 = 1
2 because firms earn approximately the same amount

in the good state ( K
2 ) as they lose in the bad state. In period 1, increased uncertainty makes delay

more attractive for each firm, raising the threshold for investment λ∗
0. Therefore, as the amount of

uncertainty grows larger, λ∗
0 and consequently β(λ∗

0) approach 1 while λ∗
1 approaches 1

2 , so that
(9) is eventually satisfied.

Intuitively, in a very risky environment, the incentive to delay and acquire information is
large; so only the most confident investors take advantage of high equilibrium prices in period 1.
However, in period 2, when there is no further opportunity to learn, many lower-capability firms
are willing to take risky but positive NPV risks. This creates large infra-marginal rents in the
second period for the marginal period 1 investor, who is confident of success. These large rents
become less valuable when interest rates rise, compelling the marginal firm to start investing im-
mediately when r rises from r = 0, and raising aggregate investment in competitive equilibrium.

The model of competition analysed here is specialized, but the qualitative results can be
extended to richer settings where entry dynamics are endogenous and prices fall gradually as
competitors enter the market. The general point is that if the option to delay is sufficiently valu-
able for the marginal investor in equilibrium (taking into account the potential loss of profits
from competitive forces, research costs, and other costs of delay), the investment demand curve
is upward sloping at low r .
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4. TESTABLE PREDICTIONS

This section presents a set of comparative statics that could be used to test the empirical relevance
of the model in future work. These predictions are derived in the basic model of Section 2 for
simplicity.

4.1. Potential to learn

An increase in r is most likely to increase investment in environments with a high potential to
learn. A formal definition of the “potential to learn” is necessary to make this conjecture precise.
Intuitively, a firm can learn more rapidly if signal noise is lower, that is, if it easier to distinguish
whether z is drawn from f or g. Recall that any firm’s second period decision is the outcome of
a hypothesis test. I will say that “signal noise” rises if the power of the test, β(x) = ∫ ∞

x g(z)dz,
falls while the type 1 error rate, α(x) = ∫ ∞

x f (z)dz, rises for all cut-off values x below the point
at which f and g are indistinguishable. Formally, let s( f,g) denote the level of signal noise with
densities f and g, and x ′ the unique point at which g(x ′)

g(x ′) = 1. Then

s( f1,g1) > s( f2,g2) if β2(x) > β1(x) and α1(x) > α2(x) ∀x < min(x ′
1, x ′

2), (10)

where x ′
j is s.t.

g(x ′
j )

f (x ′
j )

= 1. An example of an increase in signal noise according to this definition

is a rightward shift of g(z) or a leftward shift of f (z) in Figure 1. Note that this definition is an
incomplete ordering since it does not rank all distributions in terms of signal noise.

Before turning to the relationship between signal noise and ∂ I
∂r , it is useful to first establish

the connection between signal noise and the level of I itself.

Lemma 4. An increase in signal noise increases investment

s( f1,g1) > s( f2,g2) ⇒ I ( f1,g1) > I ( f2,g2).

When signal noise rises, a firm’s ability to learn about the true value of µ by waiting is reduced.
This reduces the value of delaying investment, making aggregate investment rise. Cukierman
(1980) gives an analogous result: increases in the variance of earnings reduce investment by
raising the value of delay.

How does an increase in signal noise affect the shape of I (r)? To build intuition, consider
the extreme case of totally uninformative signals ( f = g). In this case, the model collapses into
the neoclassical model, and the I (r) curve is downward sloping, that is, r∗ = 0. This observation
suggests that the potential to learn should be positively associated with r∗; that is, the upward-
sloping segment of the investment–demand curve should be larger in industries or times where
there is more to be learned. The following proposition establishes that this is indeed the case
provided that the pay-off in the bad state is sufficiently low or equivalently, the variance of returns
is sufficiently high relative to the expected return.

Proposition 4. There exists R0 > 0 s.t. if R0 < R0, a reduction in signal noise raises r∗:

s( f2,g2) < s( f1,g1) ⇒ r∗
2 > r∗

1 .

Figure 4 illustrates this result by showing I (r) for distributions with progressively lower
signal noise. To see the intuition for the result, observe that changes in signal noise affect only
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Notes: This figure shows I (r) for four pairs of signal distributions f and g. The distributions
are normal with a mean of µ0 for f and µ1 for g and a standard deviation of 16. Other
parameters are the same as those in Figure 2.

FIGURE 4

Signal noise and I (r)

V (l), leaving V (i) unaffected for each firm. An increase in r is more likely to raise an aggregate
investment if it tends to reduce V (l) more than V (i), making immediate investment preferable.
When signal uncertainty is lowered, V (l) changes in two ways. First, firms have a higher prob-
ability of investing in the good state in period 2 (β rises). Second, firms have a lower probability
of investing in the bad state (α falls). The first effect makes expected period 2 profits more sensi-
tive to the interest rate, since there is a higher probability of earning revenues in the good state.
The second effect goes in the opposite direction, since there is a lower probability of earning
revenues in the bad state.

If R0 is small, the second effect is small in magnitude relative to the first, and so V (l) is
more sensitive to r overall. For instance when R0 = 0, an increase in r has no effect at all on
revenues in the bad state. Therefore, provided that R0 is low, an increase in r is more likely to
reduce V (l) relative to V (i) for each firm and thereby raise aggregate investment when signal
uncertainty is lower. The low R0 condition on the result requires that the variance of earnings be
high relative to the mean profit rate, which is essentially a requirement that information about the
state of demand is valuable.

4.2. Short run vs. long run

I now turn to the effects of changes in r on total investment over a longer horizon, taking into
account changes in investment behaviour beyond the current period. For this analysis, it is neces-
sary to consider the T period formulation of the model instead of the two-period special case
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discussed above. In this model, the firm has the option to delay investment in every period from
1 to T −1.14

In the T -period model, total investment from period 1 to t is given by

I1,t =
t∑

s=1

Is =
1∫

λ∗
0

Cdη(λ0)+
t∑

n=2

λ∗
0∫

0

P1(Is | λ0)Cdη(λ0) (11)

where P1(Is | λ0) is the probability that a firm with prior λ0 ends up investing in period s. The
next proposition analyses the relationship between I1,t and r .

Proposition 5.

(i) I1,t (r) is a backward-bending function of r ∀t < T:

r∗
1,t ≡ argmax

r
I1,t (r) > 0 and r < r∗

1,t ⇒ ∂ I1,t

∂r
> 0 and r > r∗

1,t ⇒ ∂ I1,t

∂r
< 0

(ii) The upward-sloping portion of the I1,t (r) curve becomes smaller as t rises:

r∗
1,t > r∗

1,t+1.

The first part of the proposition is driven by the same two effects that make the response
of investment demand in period 1 to a change in r non-monotonic. If r = 0, all the firms will
postpone their decision until T and I1,t (r = 0) = 0. Similarly, if r is large, I1,t = 0. Hence,
investment over the first t periods is maximized at intermediate interest rates.

To understand the second result, observe that the growth in profits from delay diminishes
over time because the marginal return to information falls as more knowledge is accumulated.
When r falls, investors may delay investment for a few periods to acquire information, but even-
tually acquire enough information that further delay is undesirable. Since reductions in r generate
temporary delays in investment, the conventional cost of capital effect starts to dominate at lower
levels of r in the long run. Consequently, the investment-maximizing r∗

1,t falls with t .15

Proposition 5 implies that the long-run elasticity of investment demand is more negative
than the short-run elasticity of investment demand when firms learn over time. If the near-zero
existing estimates of the short-run interest elasticity of investment demand are due to learning
effects, interest rate reductions from policies that stimulate savings could, nonetheless, increase
investment over a longer horizon.

4.3. Average profit rates

In the neoclassical model, a higher interest rate increases the average rate of return of investments
that are undertaken by driving out low NPV ventures. This result is also modified when firms
learn over time.

To analyse the average rate of return, we must identify the level of ex post profitable (µ = 1)
and ex post unprofitable (µ = 0) investment by specifying how frequently a project that a manager
expects to succeed with probability λ0 actually does succeed. A natural benchmark is rational

14. See Lemma 1A in the Appendix for a characterization of optimal investment behaviour in the T -period model.
15. Unlike learning effects, which die away in the long run as firms acquire perfect information, composition effects

may never subside. Hence, when composition effects are permitted (as in Section 3.2), the long-run investment demand
curve can have a substantial upward-sloping segment.
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expectations: Pλ0 [µ = 1] = λ0. In this case, the average (net) profit rate among investments that
are undertaken in period 1 is given by:

ρ(r) =
∫ 1
λ∗

0
λ0(R1 −C)+1(1−λ0)(R0 −C)dη(λ0)∫ 1

λ∗
0
Cdη(λ0)

. (12)

Proposition 6. The average profit rate ρ is a backward-bending function of the
interest rate:

r < r∗ ⇒ ∂ρ

∂r
> 0 and r > r∗ ⇒ ∂ρ

∂r
< 0.

As established in Proposition 1, when r < r∗, an increase in the interest rate draws the marginal
investor with prior λ∗

0(r) into the period 1 pool of investors. This firm has the lowest probability
of success among the set of firms who are investing. Consequently, it pulls down the average rate
of return in the overall pool. Conversely, when r > r∗, an increase in r eliminates the marginal
investor with prior λ∗

0(r), who has the lowest probability of success in the pool of investors,
increasing the average rate of return. The average observed profit rate on current investment is
thus a backward-bending function of r . Building on earlier results, an increase in the interest rate
is more likely to lower the average observed rate of return when the potential to learn is greater
and in the short run relative to the long run.

4.4. Temporary interest rate and tax changes

I now discuss a few comparative statics for temporary interest rate changes. Formal statements
are omitted since these results are simple extensions of the preceding propositions.

First, consider the effect of an unanticipated temporary increase in the interest rate. Let r1t

denote the per-period interest rate between periods 1 and t < T . An unanticipated increase in r1t

(holding the interest rate fixed in all other periods) is more likely to reduce current investment
than a permanent increase in r because one can take advantage of lower future costs of capital by
delaying investment. If the potential to learn is sufficiently high, I (r1t ) is backward bending, with
a smaller upward-sloping segment than I (r). When the potential to learn is low, I (r1t ) is strictly
downward sloping. The longer the duration of an interest rate change, the less the incentive to
postpone investment following a temporary increase, and the larger the range of parameters over
which I (r1t ) is upward sloping.

Now consider the effect of a temporary anticipated change in the interest rate that begins
in period s > 1 and lasts until period t > s. An anticipated increase in rst is more likely to raise
current investment than a permanent change in r because one can take advantage of lower current
costs of capital by investing immediately. In fact, if the change is anticipated sufficiently far in
advance, current investment may be a strictly upward-sloping function of rst . In contrast, future
investment falls when rst rises because of the inter-temporal substitution.

Together, these results indicate that the shape of the yield curve on bonds—which embodies
investors’ expectations of future interest rates—should have a significant effect on current and
future investment. When the yield curve becomes steeper, current investment should rise relative
to subsequent investment.

A final set of predictions relates to the effect of tax changes. In the neoclassical model,
taxes matter only through the user cost of capital. In irreversible investment models, both the
user cost and the discount rate matter, and different tax policies may affect these two quantities
differently. For example, accelerated depreciation provisions change the user cost but not the
discount rate, since there is no additional incentive to delay from accelerated depreciation itself.
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Hence, accelerated depreciation should unambiguously raise investment. In contrast, changes in
capital income taxation affect equilibrium interest rates, thereby changing the discount rate and
user cost simultaneously, with potentially non-monotonic effects on investment.

5. CONCLUSION

This paper has explored the effect of interest rates on investment in an environment where firms
making irreversible investments learn over time. The main result is that at low rates, an increase
in r increases investment demand by enlarging the set of projects for which r exceeds the return
to delay.

The empirical relevance of the model for explaining how interest rate changes affect aggre-
gate investment depends on the extent to which firms re-time investments in response to changes
in market conditions. There is some evidence that firms delay investment when faced with in-
creased uncertainty, as predicted by irreversible investment models (e.g. Leahy and Whited, 1996;
Bulan, Mayer and Somerville, 2004; Bloom, Bond and Reenen, 2006). There is also some evi-
dence that cross-sectional variation in interest rates are related to the speed of real estate devel-
opment (Capozza and Li, 2001), and time-series fluctuations in interest rates affect the timing
of IPO decisions (Jovanovic and Rousseau, 2004). In future work, it would be interesting to test
whether exogenous interest rate changes affect the timing and profitability of irreversible invest-
ments in high-risk industries.

APPENDIX

All proofs for the baseline case (Section 2) are given in a model with an arbitrary decision horizon T . The corres-
ponding results discussed in the text are for the T = 2 case, unless otherwise noted. We begin by restating Lemma 1 (the
optimal investment rule when T = 2) for arbitrary T in Lemma 1A.

Lemma 1A (Optimal Investment Rule in the T period model). Let λt−1 denote the firm’s prior in period t. In
period T , the firm invests iff zT−1 > z∗

T−1 where z∗
T−1 satisfies

g(z∗
T )

f (z∗
T )

= 1−λT−1

λT−1

−πT (0)

πT (1)
. (1)

In any period t < T , the firm invests iff Vt (i) > Vt (l):

Vt (i) = λt−1πt (1)+ (1−λt−1)πt (0) (2)

Vt (l) =
T∑

s=t+1

λt−1 Pt (Is | µ = 1)πs (1)+ (1−λt−1)Pt (Is | µ = 0)πs (0) (3)

where
λt

1−λt
= λ0

1−λ0

g(z1, . . . , zt )

f (z1, . . . , zt )
= λ0

1−λ0

g(z1) · · ·g(zt )

f (z1) · · · f (zt )
(4)

and ∀t > 0: z∗
t (z1, . . . , zt−1) is uniquely defined by

Vt (i, z∗
t ,λt−1) = Vt (l, z∗

t ,λt−1)

and

Pt (It+1 | µ = 1) =
∞∫

z∗t

g(zt )dzt

Pt (It+1 | µ = 0) =
∞∫

z∗t

f (zt )dzt
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and ∀s ∈ {t +2,. . ., T }:

Pt (Is | µ = 1) =
z∗t∫

−∞

z∗
t+1∫

−∞
·· ·

z∗s−2∫
−∞

∞∫

z∗
s−1

g(zs−1)dzg(zs−2)dz · · ·g(zt+1)dzg(zt )dz

Pt (Is | µ = 0) =
z∗t∫

−∞

z∗
t+1∫

−∞
·· ·

z∗s−2∫
−∞

∞∫

z∗
s−1

f (zs−1)dz f (zs−2)dz · · · f (zt+1)dz f (zt )dz.

Proof of Lemma 1A. Period T. Bayes rule and the assumption that zt ⊥ zs for t �= s directly imply equation (4).
In period T , the pay-off to investing VT (i) is computed using the updated belief λT (z) about the probability with which
µ = 1 occurs. The firm invests iff VT (i) > 0 ⇒ λT (z)

1−λT (z) >
−πT (0)
πT (1) . This results in the period T decision rule in (1) using

(4) and the assumption that g(z)
f (z) is monotonically increasing.

Period T −1. The remainder of the proof is done by backward induction starting with period T −1, where the firm
is faced with a two-period decision problem. First, note that VT−1(i) is computed simply by taking an expectation over
the πT−1 function. To compute VT−1(l), integrate the expected pay-off in period T over the prior density of z:

VT−1(l) =
∞∫

−∞
max(VT (d1),VT (i))dm(z) =

z∗∫
−∞

VT (d1)+
∞∫

z∗
VT (i)dm(z) (5)

where dm(z) = λ0g(z)+ (1−λ0) f (z) is the unconditional density on z.

⇒ VT−1(l) = λ0πT (1)

∞∫

z∗TD −1

g(z)dz + (1−λ0)πT (0)

∞∫

z∗
TD −1

f (z)dz. (6)

Next, I establish that the firm follows a threshold rule for investment in period T −1: ∃ unique z∗
T−2(z1, . . . , zT−3)

defined by VT−1(i, z∗
T−2,λT−3) = VT−1(l, z∗

T−2,λT−3) s.t. that investing is optimal iff zT−2 > z∗
T−2. It is sufficient

to show that ∃ unique λ∗
T−2 s.t. VT−1(i,λ∗

T−2) = VT−1(l,λ∗
T−2) and that λT−2 > λ∗

T−2 makes investing optimal. To
see that there is a unique λT−2, rewrite:

VT−1(i) = λT−2b + (1−λT−2)a

VT−1(l) = λT−2b′ + (1−λT−2)a′,

where a = πT−1(0), a′ = PT−1(IT | µ = 0)πT (0), b = πT−1(1), and b′ = PT−1(IT | µ = 1)πT (1).
Note that VT−1(l,λT−1 = 0) = 0 > VT−1(i,λT−1 = 0). By assumption, ∃λT−1 s.t. VT−1(l,λT−1) ≤

VT−1(i,λT−1)

By the Intermediate Value Theorem, ∃λ∗
T−2 s.t. VT−1(i,λ∗

T−2) = VT−1(l,λ∗
T−2).

Since
∂VT−1(l)
∂λT−2

> 0, it follows that VT−1(l,λ∗
T−2) > 0. Now observe that

∂{VT−1(i)− VT−1(l)}
∂λT−2

∣∣∣∣
λ∗

T−2

= b −a +a′ −b > 0

because Vs (i,λ∗
T−2) = Vs (l,λ∗

T−2) ⇔ λ∗
T−2b + (1−λ∗

T−2)a = λ∗
T−2b′ + (1−λ∗

T−2)a′ > 0.
Therefore, at any λ∗

T−2, we must have

∂{VT−1(i)− VT−1(l)}
∂λT−2

∣∣∣∣
λ∗

T−2

> 0,

which implies that λ∗
T−2 is unique. Hence VT−1(i,λT−2) > VT−1(l,λT−2) iff λT−2 > λ∗

T−2.
Induction. Finally, I show that when Vt+1(·) has the form in (2) and (3), Vt (·) also has the same form. Vt (i) is easily

computed. To compute Vt (l), recall that the firm invests in period t +1 iff zt > z∗
t , where z∗

t has already been computed.
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Therefore

Vt (l) =
∞∫

z∗t

[λtπt+1(1)+ (1−λt )πt+1(0)][λt−1g(zt )+ (1−λt−1) f (zt )]dzt

+
z∗
t∫

−∞
Vt+1(l,λt )[λt−1g(zt )+ (1−λt−1) f (zt )]dzt

=
T∑

s=t+1

λt−1 Pt (Is | µ = 1)πs (1)+ (1−λt−1)Pt (Is | µ = 0)πs (0). (7)

Finally, arguments analogous to those given above establish that ∃ unique z∗
t−1 s.t.

Vt−1(i, z∗
t−1,λt−2) = Vs (l, z∗

t−1,λt−2)

and that if zt−1 > z∗
t−1 the investor will invest in period t . This completes the induction. ‖

Proof of Lemma 2. The proof follows directly from the second step of Lemma 1A. In any period t , ∃ unique λ∗
t−1

s.t. Vt (i,λ∗
t−1) = Vt (l,λ∗

t−1) and that λt−1 > λ∗
t−1 ⇔ Invest. Applying this to t = 1 gives the result. ‖

Proof of Lemma 3. In period 2, a firm invests if λ1 p2
1+r > C . Since ∂p2

∂ I c
2

< 0, it follows that there is a unique cut-off

value λ∗
1 and a corresponding price p2(I c

2 (λ∗
1)) such that

λ∗
1 p2(I c

2 (λ∗
1))

1+ r
= C. (8)

In equilibrium, all firms with λ1 > λ∗
1 invest, all other firms stay out, and the market clears at the resulting price p2 by

construction. Therefore, for any firm with given prior λ0, there is a cut-off value z∗(λ0) such that the firm invests in
period 1 iff z > z∗.

Now consider period 1 investment behaviour. Firms invest in period 1 if

V (i,λ0) = λ0 p1

1+ r
−C (9)

> V (l,λ0) = λ0β(z∗(λ0))

[
p2

(1+ r)2
− C

1+ r

]
+ (1−λ0)α(z∗(λ0))

[
− C

1+ r

]
(10)

where α and β are defined as in the text. Note that V (l,λ0) is strictly positive in equilibrium if λ0 > 0. It follows from
Lemma 2 that for a given price vector (p1, p2), there is a unique λ∗

0 such that firms with λ0 > λ∗
0 invest in period 1 and

the remainder delay. Since ∂pt/∂ I c
t < 0, ∂λ∗

0/∂p1 < 0, and ∂λ∗
0/∂p2 > 0, there is a unique price vector (p1, p2) at which

all firms are optimizing and markets clear in both periods. Thus, equilibrium investment is characterized by a price vector
(p1, p2) and a cut-off value λ∗

0 such that

V (i,λ∗
0, p1) = V (l,λ∗

0, p1, p2) > 0. ‖ (11)

Proof of Lemma 4. Take any ( f1,g1), ( f2,g2) s.t. s( f1,g1) > s( f2,g2). For the firm with λ′
0 = λ∗

0( f1,g1),

V1(l) =
T∑

s=2

λ0 P1(Is | µ = 1)πs (1)+ (1−λ0)P1(Is | µ = 0)πs (0) (12)

V (i,λ′
0) = λ′

0

{
R1

1+ r
−C

}
+ (1−λ′

0)

{
R0

1+ r
−C

}
. (13)

The shift from ( f1,g1) to ( f2,g2) only affects V (l,λ′
0). It follows from the definition of a reduction in signal noise that

for any s, P1(Is | µ = 1) is higher under ( f2,g2) than under ( f1,g1), while P1(Is | µ = 0) is lower. Hence,

V (l,λ′
0; f2,g2) > V (l,λ′

0; f1,g1) = V (i,λ′
0). (14)
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Lemma 2 implies that λ∗
0( f2,g2) > λ′

0 = λ∗
0( f1,g1). Since ∂ I

∂λ∗
0

< 0, the result follows. ‖

Proof of Proposition 1.

(i) Equations (2) and (3) imply that in period 1

V (i) = λ0π1(1)+ (1−λ0)π1(0) (15)

V (l) =
T∑

s=2

λ0 P1(Is | µ = 1)πs (1)+ (1−λ0)P1(Is | µ = 0)πs (0) (16)

where πt (µ) = Rµ

(1+r )t
− C

(1+r)t−1 . Now suppose r = 0. Then

V (i) = λ0{R1 −C}+ (1−λ0)(R0 −C)

V1(l,λ0) = λ0{R1 −C}
T∑

t=2

P1(It | µ = 1)+ (1−λ0){R0 −C}
T∑

t=2

P1(It | µ = 0).

For λ0 = 1, the definitions in Lemma 2 imply that z∗
t = ∞ for t < T and z∗

T = −∞ ⇒ ∑T
t=2 P1(It | µ = 1) = 1.

Therefore λ0 = 1 ⇒ V (i,λ0) = (π1 − δ) = V (l,λ0). Hence λ∗
0(r = 0) = 1 ⇒ I (r = 0) = 0.

To establish that limr→0
∂ I
∂r (r) = +∞, note first that ∂ I

∂r = ∂ I
∂λ∗

0
× ∂λ∗

0
∂r .

By the Implicit Function Theorem,

∂λ∗
0

∂r
= − ∂V (i ,λ0)/∂r − ∂V (l,λ0)/∂r

∂V (i ,λ0)/∂λ0 − ∂V (l,λ0)/∂λ0

∣∣∣∣
λ∗

0

. (17)

Let
∂λ∗

0
∂r = N (r)

D(r) . It can be shown that N (r = 0) = C − R1 < 0 and D(r) > 0 ∀r > 0.

Since D(r = 0) = 0 and ∂ I
∂λ∗

0
= −λ∗

0dη(λ∗
0) < 0 it follows that limr→0

∂ I
∂r (r) = +∞.

(ii) Note that C < R1 ⇒ ∃r ′ s.t. R1
1+r ′ = C . Then

r ≥ r ′ ⇒ V (i,λ0) < 0 ∀λ0 ≤ 1 ⇒ λ∗
0(r) = 1 ⇒ I (r) = 0.

Given that (i) I (0) = I (r ′) = 0, (ii) I (r) is continuous, and (iii) [0,r ′] is compact, it follows that I (r) has an
interior maximum r∗ ∈ (0,r ′).
To prove uniqueness of r∗, recall

∂ I

∂r
= ∂ I

∂λ∗
0

× ∂λ∗
0

∂r
= ∂ I

∂λ∗
0

N (r)

D(r)
. (18)

Since I is continuous and ∂V (i ,λ0)−∂V (l,λ0)
∂λ0

(λ∗
0) > 0 ∀r > 0, N (r) = 0 at any critical r . A sufficient condition

for r∗ to be unique is that N (r) has a unique root. I establish this by showing that N (r) = 0 ⇒ ∂N
∂r (r) > 0.

Given that ∂V (l)−∂V (i)
∂r (r∗) = 0 and V (l,λ∗

0(r∗)) = V (i,λ∗
0(r∗)), it follows that

∂N

∂r
(r∗,λ∗

0(r∗)) = 1

1+ r∗ ∂

[
(1+ r)(∂V (l)− ∂V (i))

∂r

]/
∂r = 1

1+ r∗ ∂[M(r)]/∂r (19)

where

M(r) = ∂((1+ r)V (l))(−∂((1+ r)V (i))

∂r
(20)

= −λ0β(z∗)
R1

(1+ r)2
− (1−λ0)α(z∗)

R0

(1+ r)2
+C,

and

β ≡
T∑

t=2

P1(It | µ = 1)

(1+ r)t−1
, α ≡

T∑
t=2

P1(It | µ = 0)

(1+ r)t−1
.
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Differentiating (20) gives

∂[M(r)]/∂r = λ0β(z∗)
2R1

(1+ r)3
+ (1−λ0)α(z∗)

2R0

(1+ r)3
− ∂β

∂r

R1

(1+ r)2
− ∂α

∂r

R0

(1+ r)2
. (21)

To sign (21), note that ∂α
∂r (r∗) < 0 and ∂β

∂r (r∗) < 0. This is easiest to see when T = 2, where

∂β

∂r
= − ∂z∗

∂r
g(z∗),

∂α

∂r
= − ∂z∗

∂r
f (z∗).

Note that ∂z∗
∂r > 0 because g(z∗)

f (z∗) = 1−λ0
λ0

C−R0/(1+r)
R1/(1+r)−C and ∂[ g(z)

f (z) ]/∂z > 0. Therefore ∂α
∂r < 0 and ∂β

∂r < 0.

When T > 2, the final step can be established using ∂ P1(It |λ0)
∂r (r∗) < 0 ∀t > 1, which follows from

∂2{V (l,λ0)−V (i,λ0)}
∂λ0∂r < 0 (see proof of Proposition 4 below) and the definition of P1(It |λ0). Since ∂α

∂r < 0 and
∂β
∂r < 0, it follows that ∂M(r)/∂r(r∗) > 0 ⇒ ∂N (r)/∂r(r∗) > 0. ‖

Proof of Proposition 2. Define p = λ0 p1 + (1 − λ0)p0 as the expected price ex ante and note that p =∫ ∞
z=−∞{λ1(z)p1 + (1−λ1(z))p0}dm(z) where dm(z) denotes the marginal distribution of z, as defined in the text.

In period 2, after observing z, the firm updates its beliefs to λ1(z) and chooses I2(z) to

max{λ1(z)p1 + (1−λ1(z))p0} F(I1 + I2)− F(I1)

(1+ r)2
− I2(z)

1+ r
s.t. I2 ≥ 0. (22)

Let I∗
2 (z) denote the optimal level of period 2 investment as a function of z. At an interior optimum, optimal

investment I∗
2 (z) satisfies:

F ′(I1 + I∗
2 (z)){λ1(z)p1 + (1−λ1(z))p0} = 1+ r. (23)

When F ′(I1){λ1(z)p1 + (1−λ1(z))p0} < 1+ r , I∗
2 (z) = 0.

The value function in period 2 is

V2(I1) =
∞∫

z=−∞

[
{λ1(z)p1 + (1−λ1(z))p0} F(I1 + I∗

2 (z))− F(I1)

(1+ r)2
− I∗

2 (z)

1+ r

]
dm(z). (24)

The value function in period 1 is:

V1 = p
F(I1)

1+ r
− I1 + V2(I1)

=
∞∫

z=−∞
[λ1(z)p1 + (1−λ1(z))p0]

[
F(I1)

1+ r
+ F(I1 + I2(z))− F(I1)

(1+ r)2

]
− I2(z)

1+ r
− I1dm(z).

(25)

Given the optimality condition for I∗
2 (z), it follows that

∂V1(r = 0)

∂ I1
=

∞∫
z=−∞

[λ1(z)p1 + (1−λ1(z))p0][F ′(I1 + I∗
2 (z))−1]dm(z) < 0

since for z sufficiently small, F ′(I1){λ1(z)p1 + (1−λ1(z))p0} < 1. Hence V1(r = 0) is maximized when I1(r = 0) = 0.
It is easy to show that as r → ∞, I1 → 0 and that ∃r ′ > 0 s.t. I1(r ′) > 0. These observations, coupled with continuity

of I1(r), establish the result. ‖

Proof of Proposition 3. Observe that ∂ I1
∂r = d I1

dλ∗
0

dλ∗
0

dr . The implicit function theorem implies

dλ∗
0

dr
= − dV (i,λ0)/dr −dV (l,λ0)/dr

dV (i,λ0)/dλ0 −dV (l,λ0)/dλ0
= − N

D
. (26)

At r = 0, the denominator of this expression is

D = p1 −β(λ∗
0)p2 + (β(λ∗

0)−α(λ∗
0))C.
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Since β > α and p1 > p2, it follows that D > 0. The numerator is

N = − λ0 p1

(1+ r)2
+ λ0dp1/dr

1+ r
−

{
λ0β

(
−2

p2

(1+ r)3
+ dp2/dr

(1+ r)2
+ C

(1+ r)2

)
+ (1−λ0)α

(
C

(1+ r)2

)}
. (27)

Using the fact that V (i,λ∗
0) = V (l,λ∗

0), N simplifies at r = 0 to

N (r = 0)|p-fixed = λ∗
0(r = 0)β(λ∗

0)p2 −C

if dpt/dr is 0.
I now show that N (r = 0)|p-fixed �⇒ ∂ I

∂r (r = 0) > 0 using a proof by contradiction. Suppose that ∂ I1
∂r (r = 0) < 0.

In this case, dp1/dr > dp2/dr > 0 because ∂ I c
1/∂ I1 = 1 and ∂ I c

2/∂ I1 < 1 and ∂pt/∂ I c
t < 0. It follows that N (r = 0) > 0

when p is variable. Since N > 0 and D > 0,
dλ∗

0
dr < 0, which implies ∂ I1

∂r (r = 0) > 0. But this contradicts the supposition.

Therefore ∂ I1
∂r (r = 0) > 0 if N (r = 0)|p-fixed > 0.

Since λ∗
1 p2 = C(1+ r) in period 2 equilibrium, N (r = 0)|p-fixed > 0 if

λ∗
0β(λ∗

0)

λ∗
1

> 1. Hence

λ∗
0β(λ∗

0)

λ∗
1

> 1 �⇒ ∂ I1

∂r
(r = 0) > 0. ‖

Corollary to Proposition 3. At r = 0, the period 2 threshold for investment is characterized by the following
condition:

λ∗
1 = C0 + 1

2 K

h(I c
2 )+ K

.

Since I c
2 is bounded, it follows that

lim
K→∞λ∗

1 = 1

2
.

I now establish that raising K lowers period 1 investment using a proof by contradiction. Consider the behaviour of the
marginal period 1 firm, with λ0 = λ∗

0. At the original equilibrium, the marginal investor has

V (i,λ0) = λ0

(
h(I c

1 )+ 1

2
K −C0

)
+ (1−λ0)

[
−

(
C0 + 1

2
K

)]
(28)

= V (l,λ0) = λ0β(z∗(λ0))

[
(h(I c

2 )+ K )−
(

C0 + 1

2
K

)]
+ (1−λ0)α(z∗(λ0))

[
−

(
C0 + 1

2
K

)]
. (29)

Suppose that increasing K raises I1. This would require that dV (i,λ0)/dK > dV (l,λ0)/dK . Recall that ∂ I c
1/∂ I1 = 1

and ∂ I c
2/∂ I1 < 1. Hence, ∂h/∂ I c

t < 0 implies ∂V (i,λ0)/∂ I1 < ∂V (l,λ0)/∂ I1. In addition, observe that ∂V (i,λ0)/∂K <

∂V (l,λ0)/∂K because β > α. Consequently, both the direct effect of increasing K and the indirect effect of equilibrium
price changes lower V (i,λ0) relative to V (l,λ0) for the marginal investor. This makes the marginal firm drop out of the
period 1 investment pool, lowering I1. But this contradicts the supposition. Therefore increasing K must strictly lower
I1. Hence, as K → ∞, λ∗

0 → 1, while implies β(λ∗
0) → 1. Meanwhile λ∗

1 → 1
2 . It follows that (9) must hold as K → ∞,

as claimed. ‖

Proof of Proposition 4. Take any ( f1,g1) and ( f2,g2) s.t. s( f2,g2) < s( f1,g1). Let r∗
1 and r∗

2 denote the

investment-maximizing values of r in each case, and let λ′
0 = λ∗

0(r = r∗
1 , f1,g1) and λ

′′
0 = λ∗

0(r = r∗
1 , f2,g2). By Lemma

4, λ
′′
0 > λ′

0.
It can be shown that

∂2{V (l,λ0)− V (i,λ0)}
∂λ0∂r

= ∂

{(
R1

(1+ r)2
− C

1+ r

)
β(z∗)−

(
R0

(1+ r)2
− C

1+ r

)
α(z∗)

−
((

R1

1+ r
−C

)
−

(
R0

1+ r
−C

))}
/∂r < 0.

Since
∂V (l,λ′

0; f1,g1)

∂r = ∂V (i,λ′
0; f1,g1)

∂r at r = r∗
1 , it follows that

∂V (l,λ′′
0 ; f1,g1)

∂r <
∂V (i,λ′′

0 ; f1,g1)

∂r at r = r∗
1 .
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Using logic similar to that in Lemma 4, s( f2,g2) < s( f1,g1) ⇒ β2 > β1 and α2 < α1. Observe that

∂V (l)

∂r
= −λ0β

{
2R1

(1+ r)3
− C

(1+ r)2

}
− (1−λ0)α

{
2R0

(1+ r)3
− C

(1+ r)2

}
.

If R0 < C/2, both terms become more negative when β rises and α falls; hence

∂V (l,λ′′
0 ; f2,g2)

∂r
<

∂V (l,λ′′
0 ; f1,g1)

∂r
<

∂V (i,λ′′
0 ; f1,g1)

∂r
= ∂V (i,λ′′

0 ; f2,g2)

∂r

⇒ ∂ I

∂r
(r = r∗

2 ; f1,g1) = ∂ I

∂λ∗
0

× ∂V (l,λ0)/∂r − ∂V (i ,λ0)/∂r

∂V (i ,λ0)/∂λ0 − ∂V (l, λ0)/∂λ0

∣∣∣∣
λ′′

0

> 0.

Therefore R0 < C/2 ⇒ r∗
1 > r∗

2 by Proposition 1. ‖

Proof of Proposition 5.

(i) For any t < T , r = 0 ⇒ λ∗
0 = 1 and z∗

1 = z∗
2 = . . . = z∗

t = ∞ by Lemma 1A.

Therefore I1,t (r = 0) = 0. As above, I1,t (r) = 0 for r > r ′ > 0 for r ′ s.t. R1
1+r ′ = C .

By the Intermediate Value Theorem, ∃r∗
1,t that is a critical point and global maximum for I1,t .

Uniqueness of r∗
1,t follows from an argument equivalent to that given in Proposition 1 to show that r < r∗

1,t ⇔
∂ I1,t
∂r > 0.

(ii) I will show that,
∂ I1,t
∂r (r) < 0 ⇒ ∂ I1,t+1

∂r (r) < 0, which establishes the result. Observe that

I1,t (r) =
t∑

s=1

Is (r) =
1∫

λ*
0

C dη(λ0)+
t∑

s=2

λ*
0∫

0

P1(Is | λ0)C dη(λ0). (30)

Therefore

∂ I1,t

∂r
= − ∂λ∗

0
∂r

Cdη(λ∗
0)

⎧⎨
⎩1−

t∑
s=2

1

(1+ r)s−1
P1(Is | λ∗

0)

⎫⎬
⎭+C

λ*
0∫

0

⎡
⎣ t∑

s=2

∂ P1(Is | λ0)

∂r

⎤
⎦dη(λ0). (31)

Now suppose r > r∗, the investment-maximizing interest rate for period 1. Then
∂λ∗

0
∂r > 0 implies the first term is

negative in the expression above. To evaluate the sign of the second term, note that ∂ P1(It |λ0)
∂r < 0 ∀λ0 < λ∗

0 when

r > r∗. This follows from ∂2{V (l,λ0)−V (i,λ0)}
∂λ0∂r < 0 and the definition of P1(It | λ0). Since P1(It | λ0) > 0 ∀t > 1

and ∂ P1(It |λ0)
∂r < 0 ∀t > 1, it follows by inspection that

∂ I1, t
∂r (r) < 0 ⇒ ∂ I1,t+1

∂r (r) < 0. ‖

Proof of Proposition 6. Define ρ(r) = ∫ 1
λ*

0
λ0(R1 −C)+ (1−λ0)(R0 −C))dη(λ0)/

∫ 1
λ*

0
Cdη(λ0).

Note that

∂ρ/∂r =
(

− ∂λ∗
0

∂r

)
Cdη(λ∗

0)

[
∫ 1
λ*

0
Cdη(λ0)]2

A, (32)

where

A =
1∫

λ*
0

[λ∗
0(R1 −C)+ (1−λ∗

0)(R0 −C)]− [λ0(R1 −C)+ (1−λ0)(R0 −C)]dη(λ0). (33)

Since
∫ 1
λ*

0
(λ*

0 −λ0)dη(λ0) < 0, it follows that A < 0. Hence r < r∗ ⇒ ∂λ∗
0

∂r < 0 ⇒ ∂ρ
∂r < 0 and r > r∗ ⇒ ∂λ∗

0
∂r >

0 ⇒ ∂ρ
∂r > 0 ‖
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