Salience and Taxation: Theory and Evidence

Raj Chetty, UC-Berkeley and NBER
Adam Looney, Federal Reserve Board
Kory Kroft, UC-Berkeley

June 2008

MOTIVATION

- Central assumption in PF: Agents optimize fully with respect to incentives created by tax schedules (Ramsey 1927, Mirrlees 1971, ...)
- Tax schedules often complex in theory and practice
- Growing body of evidence suggests that individuals optimize imperfectly when incentives not transparent and feedback limited
 - Financial markets, partitioned prices, etc. (DellaVigna 2007)

→ Questions:

- (1) Do agents optimize fully with respect to the incentives created by tax policies in practice?
- (2) If not, how do welfare consequences of taxation change?

<u>OVERVIEW</u>

- Part 1: Test whether "salience" (visibility of tax-inclusive price) affects behavioral responses to commodity taxation
 - Does effect of a tax on demand depend on whether it is included in posted price?
 - Two strategies that provide complementary evidence: experiment in a store and analysis of observational data on alcohol demand
- Part 2: Develop formulas for incidence and efficiency costs of taxation that permit salience effects and other optimization errors
 - Formulas do not require specification of a specific positive theory for why agents fail to optimize with respect to tax policies
 - → Simple but robust Harberger-type formulas for welfare analysis

EMPIRICAL FRAMEWORK

- Economy with two goods, x and y, that are supplied perfectly elastically
- Prices: Normalize price of y to 1; let p denote posted price of x
- Taxes: y untaxed, x subject to ad-valorem sales tax τ^S (not included in posted price), so tax-inclusive price of x is $q = p(1 + \tau^S)$.

- If agents optimize fully, demand should only depend on the total taxinclusive price: $x(p, \tau^S) = x((1 + \tau^S)p, 0)$,
- Full optimization implies price elasticity equals gross-of-tax elasticity:

$$\varepsilon_{x,p} \equiv -\frac{\partial \log x}{\partial \log p} = \varepsilon_{x,1+\tau^S} \equiv -\frac{\partial \log x}{\partial \log (1+\tau^S)}$$

ESTIMATING EQUATION

- Hypothesis: agents under-react to tax because it is less salient.
- To test this hypothesis, we log-linearize the demand function and obtain the following estimating equation:

$$\log x(p,\tau^S) = \alpha + \beta \log p + \theta_{\tau}\beta \log(1 + \tau^S)$$

• θ_{τ} measures degree to which agents under-react to the tax:

$$\theta_{\tau} = \frac{\partial \log x}{\partial \log(1+\tau^{S})} / \frac{\partial \log x}{\partial \log p} = \frac{\varepsilon_{x,1+\tau^{S}}}{\varepsilon_{x,p}}$$

TWO EMPIRICAL STRATEGIES

- Two strategies to estimate θ_{τ} :
 - 1. Manipulate tax salience: make sales tax as visible as pre-tax price
 - Effect of intervention on demand:

$$v = \log x((1+\tau^S)p, 0) - \log x(p, \tau^S)$$

Compare to effect of equivalent price increase to estimate θ

$$(1 - \theta_{\tau}) = -v/[\varepsilon_{x,p} \times \log(1 + \tau^{S})]$$

2. Manipulate **tax rate**: compare $\varepsilon_{x,p}$ with $\varepsilon_{x,1+t}$

$$\theta_{\tau} = \varepsilon_{x,1+\tau^S} / \varepsilon_{x,p}$$

STRATEGY 1: VARIATION IN TAX SALIENCE

- Experiment manipulating salience of sales tax implemented at a supermarket that belongs to a major grocery chain
 - 30% of products sold in store are subject to sales tax
 - Posted tax-inclusive prices on shelf for subset of products subject to sales tax (7.375% in this city)
- Data: Scanner data on price and weekly quantity sold by product

TABLE 1
Evaluation of Tags: Classroom Survey

	Mean	Median	SD
Original Price Tags: Correct tax-inclusive price w/in \$0.25	0.18	0.00	0.39
Experimental Price Tags: Correct tax-inclusive price w/in \$0.25	0.75	1.00	0.43
T-test for equality of means: p < 0.001			
N=49			

Students were asked to choose two items from image.

Asked to report "Total bill due at the register for these two items."

RESEARCH DESIGN

Quasi-experimental difference-in-differences

• **Treatment** group:

Products: Cosmetics, Deodorants, and Hair Care Accessories

Store: One large store in Northern California

Time period: 3 weeks (February 22, 2006 – March 15, 2006)

Control groups:

Products: Other prods. in same aisle (toothpaste, skin care, shave)

Stores: Two nearby stores similar in demographic characteristics

Time period: Calendar year 2005 and first 6 weeks of 2006

Effect of Posting Tax-Inclusive Prices: Mean Quantity Sold

Effect of Fosting Tax-inclusive Ffices. Mean Quantity Sold									
TREATMENT STORE									
Period	Control Categories	Treated Categories	Difference						
Baseline	26.48	25.17	-1.31						
	(0.22)	(0.37)	(0.43)						
_									
Experiment	27.32	23.87	-3.45						
	(0.87)	(1.02)	(0.64)						
D:ffarance	0.04	4.20	DD - 214						
Difference	0.84	-1.30	$DD_{TS} = -2.14$						
over time	(0.75)	(0.92)	(0.64)						
CONTROL STORES									
Period	Control Categories		Difference						
Penou	Control Categories	Treated Categories	Difference						
Baseline	30.57	27.94	-2.63						
	(0.24)	(0.30)	(0.32)						
	(**= *)	(5.55)	(3334)						
Experiment	30.76	28.19	-2.57						
	(0.72)	(1.06)	(1.09)						
Difference	0.19	0.25	$DD_{CS} = 0.06$						
over time	(0.64)	(0.92)	(0.90)						
		DDD Estimate	-2.20						
		DDD Latillate	(0.58)						
			(0.30)						

TABLE 4Effect of Intervention: Selected Regression Estimates

	Log Quantity (1)	Revenue (2)	Quantity (3)
Treatment	-0.10 (0.03)***	-13.12 (4.88)	-2.27 (0.60)***
Log Average Price	-1.59 (0.11)***		
Before Treatment			-0.21 (1.07)
After Treatment			0.20 (0.78)
N	18,827	19,764	21,060

Note: Estimates imply $\theta_{\tau}\approx 0.35$

Figure 1
Distribution of Placebo Estimates: Log Quantity

STRATEGY 2: VARIATION IN TAX RATES

- Second method of estimating θ_{τ} : compare effects of price changes and tax changes
- Focus on alcohol consumption because it is subject to two statelevel taxes in the U.S.:
 - *Excise tax* (τ^{E}): included in price
 - Sales tax (τ^{S}) : added at register, not shown in posted price
- Exploiting state-level changes in these two taxes, compare elasticities to estimate θ_{τ}
 - Complements experiment by giving evidence on whether tax salience matters in long run
 - Addresses concern that experiment may have led to a response because of violation of norms or "Hawthorne effect"

RESEARCH DESIGN

Demand specification for alcohol as a function of tax rates:

$$\log x(\tau^E, \tau^S, \theta_\tau) = \alpha + \beta \log(1 + \tau^E) + \theta_\tau \beta \log(1 + \tau^S)$$

• Estimate β and θ in first-differences using OLS, exploiting state-level changes in sales and excise taxes:

$$\Delta \log x_{jt} = \alpha' + \beta \Delta \log(1 + \tau_{jt}^E) + \theta_{\tau} \beta \Delta \log(1 + \tau_{jt}^S) + X_{jt} \rho + \varepsilon_{jt}$$

- Complication: Sales tax applies to approximately 40% of consumption (but *not* food).
 - 1% increase in t^S changes relative price of alcohol (x) and composite commodity (y) by only 0.6%
- Data: aggregate annual beer consumption by state from 1970-2003 based on tax records (NIH)

Figure 2a
Per Capita Beer Consumption and State Beer Excise Taxes

Figure 2b Per Capita Beer Consumption and State Sales Taxes

Change in Log(1+Sales Tax Rate)

Effect of Excise and Sales Taxes on Beer Consumption

Dependent Variable: Change in Log(per capita beer consumption)						
	Baseline	Bus Cyc, Alc Regs.	3-Year Diffs	Food Exempt		
	(1)	(2)	(3)	(4)		
ΔLog(1+Excise Tax Rate)	-0.87 (0.17)***	-0.89 (0.17)***	-1.11 (0.46)**	-0.91 (0.22)***		
ΔLog(1+Sales Tax Rate)	-0.20	-0.02	-0.00	-0.14		
	(0.30)	(0.30)	(0.32)	(0.30)		
Business Cycle Controls		X	X	X		
Alcohol Regulation Controls		X	X	X		
Year Fixed Effects	X	X	X	X		
F-Test for Equality of Coeffs.	0.05	0.01	0.05	0.04		
Sample Size	1,607	1,487	1,389	937		

Note: Estimates imply $\theta_{\tau}\approx 0.06$

WHY DO CONSUMERS UNDER-REACT TO TAXES?

- Two potential explanations of data:
 - 1. Information: Individuals uninformed about tax rates; tax-inclusive tags provide information, leading to reduced demand
 - 2. Salience: Individuals do not compute tax-inclusive prices when shopping, focusing instead on salient pre-tax posted price
- Distinguish between these mechanisms using a survey of knowledge about tax rates

	on the shelf) f	r (in addition to for each of the	the		Have you p month?	urcl	hased these i	tems within t	the la	ast
milk	Y N	toothpaste	Y	N	milk	Y	N	toothpaste	Y	N
magazines	Y N	soda	Y	N	magazines	Y	N	soda	Y	N
beer	Y N	cookies	Y	N	beer	Y	N	cookies	Y	N
potatoes	Y N	cigarettes	Y	N	potatoes	Y	N	cigarettes	Y	N
What is the sales tax rate in [city]?%										
What is the California state income tax rate in the highest tax bracket? %										
What percentage of families in the US do you think pay the federal estate tax when someone dies?										
< 2%	2-109	%	10-2	25%	25-5	0%		> 50%		

POSITIVE THEORIES

- Simple explanation of salience effects: bounded rationality
 - Compute tax-inclusive price if benefit > cost of time/cognition
 - Gains to computing q are small (second-order):
 - With quasilinear utility, initial x = \$1,000 and $\varepsilon_{x,p} = 1$, loss from ignoring 10% tax is only \\$5.
- More sophisticated model: use a heuristic (rounding, different shadow value of money for taxed/untaxed goods)
- Alternative theory: attention triggered by cues
- Our data does not allow us to distinguish between these models, and relevant model/heuristics may differ across environments
- → Important to have a method of welfare analysis that does not rely on a specific model of optimization errors

WELFARE ANALYSIS

- Objective: Simple partial-equilibrium formulas for incidence and efficiency costs that allow for salience effects
 - Focus on commodity taxes, but analysis is easily adapted to income/capital taxes
- Setup: Two goods, x and y; price of y is 1, pretax price of x is p.
- Taxes: y untaxed. The government levies a **unit** sales tax on x at rate t^S , which is not included in the posted price
 - Tax-inclusive price of x: $q = p + t^S$
- Assume that govt. does not spend tax revenue on taxed good
- Only deviation from standard Harberger partial-equilibrium analysis: consumers make optimization errors relative to taxes

CONSUMPTION

- Representative consumer has wealth Z and utility u(x) + v(y)
- Let {x*(p,t^S,Z), y*(p,t^S,Z)} denote bundle chosen by a fully-optimizing agent as a function of pretax price, sales tax, and wealth
- Let $\{x(p,t^S,Z), y(p,t^S,Z)\}$ denote empirically observed demands
- Place no structure on these demand functions except for feasibility:

$$(p + t^S)x(p, t^S, Z) + y(p, t^S, Z) = Z$$

• For unit taxes, define degree of under-reaction to tax as

$$\theta = \frac{\partial x}{\partial t^S} / \frac{\partial x}{\partial p} = \frac{\varepsilon_{x,q|t^S}}{\varepsilon_{x,q|p}}$$
where $\varepsilon_{x,q|t^S} = -\frac{\partial x}{\partial t^S} \frac{q}{x(p,t^S,Z)}$ and $\varepsilon_{x,q|p} = -\frac{\partial x}{\partial p} \frac{q}{x(p+t^E,t^S,Z)}$

• Focus on case where θ < 1, but results apply for any θ

PRODUCTION

- Price-taking firms use c(S) units of y to produce S units of x
- All firms optimize perfectly. Supply function S(p) defined by:

$$p = c'(S(p))$$

- Let $\varepsilon_{S,p} = \frac{\partial S}{\partial p} \times \frac{P}{S(p)}$ denote the price elasticity of supply
- Ignore GE effects throughout (market for y unaffected by tax on x)

- How is tax burden shared between consumers and producers in competitive equilibrium?
- Let $D(p, t^S, Z)$ denote demand curve in incidence analysis
- Let $p = p(t^S)$ denote the equilibrium pretax price that clears the market for good x as a function of the tax rate
- Market clearing price p satisfies:

$$D(p, t^S, Z) = S(p)$$

Objective: characterize dp/dt^S and dq/dt^S

Figure 3
Incidence of Taxation

Incidence of increasing sales tax rate t^S on producers is

$$\frac{dp}{dt^{S}} = \frac{\partial D/\partial t^{S}}{\partial S/\partial p - \partial D/\partial p} = -\frac{\partial \varepsilon_{D,q|p}}{\frac{q}{p}\varepsilon_{S,p} + \varepsilon_{D,q|p}}$$

- 1. Incidence on producers attenuated by θ
- 2. No tax neutrality: taxes on producers have greater incidence on producers than non-salient taxes levied on consumers

Intuition: Producers need to cut pretax price less when consumers are less responsive to tax

Incidence of increasing sales tax rate t^S on producers is

$$\frac{dp}{dt^S} = \frac{\partial D/\partial t^S}{\partial S/\partial p - \partial D/\partial p} = -\frac{\theta \, \varepsilon_{D,q|p}}{\frac{q}{p} \, \varepsilon_{S,p} + \varepsilon_{D,q|p}}$$

Increase in θ (attention) not equivalent to increase in $\varepsilon_{D,q|p}$ (elasticity)

Example: Two markets with $\varepsilon_{S,p} = 0.1$, $\varepsilon_{D,qlt} = 0.3$

- Market A: $\epsilon_{D,q|p} = 0.3$, $\theta = 1$ Market B: $\epsilon_{D,q|p} = 1$, $\theta = 0.3$

$$[dp/dt^{S}]^{A} = -.75 \text{ vs. } [dp/dt^{S}]^{B} = -.27$$

 \rightarrow Shortcut of making inferences about incidence from $\epsilon_{\text{D,Qlt}}$ fails

Incidence of increasing sales tax rate t^S on producers is

$$\frac{dp}{dt^{S}} = \frac{\partial D/\partial t^{S}}{\partial S/\partial p - \partial D/\partial p} = -\frac{\theta \varepsilon_{D,q|p}}{\frac{q}{p} \varepsilon_{S,p} + \varepsilon_{D,q|p}}$$

Intuition: price elasticity affects both shift in demand curve and size of price cut needed to re-equilibriate market; tax elasticity only affects shift

Related implication: holding tax elasticity fixed, increase in price elasticity *raises* incidence on consumers

Taxing markets with more elastic demand could lead to greater/lesser incidence on consumers, depending on covariance between tax and price elasticities

EFFICIENCY COST

- Define excess burden using "EV" concept (Mohring 1971)
 - How much extra revenue could be raised by switching to lump sum taxation, keeping agent utility constant?
- Define generalized indirect utility, expenditure, and demand functions with separate posted-price and tax effects
- Excess burden (EB) of introducing a revenue-generating sales tax *t* is:

$$EB(t^S) = Z - e(p, 0, V(p, t^S, Z)) - R(0, t^S, Z)$$

• EB can be interpreted as the total social surplus from the purchases that fail to occur because of the tax.

PREFERENCE RECOVERY

- Efficiency cost of tax depends on: (1) effect of tax on behavior and (2) effect of change in behavior on utility.
- Key challenge: identifying (2) when agents do not optimize perfectly
- We make two assumptions to recover underlying preferences

PREFERENCE RECOVERY ASSUMPTIONS

A1 Taxes affect utility only through their effects on the chosen consumption bundle. Agent's indirect utility given taxes of (t^E, t^S) is

$$V(p + t^E, t^S, Z) = u(x(p + t^E, t^S, Z)) + v(y(p + t^E, t^S, Z))$$

A2 When tax inclusive prices are fully salient, the agent chooses the same allocation as a fully optimizing agent:

$$x(p,0,Z) = x^*(p,0,Z) = \arg\max u(x(p,0,Z)) + v(Z - px(p,0,Z))$$

- → Two steps in efficiency calculation:
 - 1. Use x(p,0,Z) to recover utility as in standard model
 - 2. Use $x(p,t^S,Z)$ to calculate $V(p,t^S,Z)$

EFFICIENCY COST

- We derive simple elasticity-based formulas for EB using second-order approximations as in Harberger (1964)
 - Focus here on case with fixed producer price (perfectly elastic supply) and no pre-existing taxes. These are treated in paper.
 - First consider case with no income effects (v(y) = y), then turn to general case.
 - In quasilinear case, EB can be illustrated using a simple consumer surplus diagram

Figure 4
Excess Burden with Quasilinear Utility and Fixed Producer Prices

EFFICIENCY COST: QUASILINEAR UTILITY

When utility is quasilinear, excess burden of introducing a small tax t^S is

$$EB \simeq -\frac{1}{2} (t^S)^2 \frac{\partial x/\partial t^S}{\partial x/\partial p} \frac{\partial x}{\partial t} = \frac{1}{2} (\theta t^S)^2 \frac{\varepsilon_{x,q|p}}{p+t^S}$$

Inattention reduces excess burden when dx/dZ = 0.

Intuition: tax t^s induces behavioral response equivalent to a fully perceived tax of θt^s .

If $\theta = 0$, tax is equivalent to a lump sum tax and EB = 0 because agent continues to choose first-best allocation.

EFFICIENCY COST WITH INCOME EFFECTS

Same formula, but all elasticities are now compensated:

$$EB \simeq -\frac{1}{2} (t^S)^2 \frac{\partial x^c / \partial t^S}{\partial x^c / \partial p} \partial x^c / \partial t^S = \frac{1}{2} (\theta^c t^S)^2 \frac{\varepsilon_{x,q|p}^c}{p+t^S}$$

- Compensated price demand: dx^c/dp = dx/dp + xdx/dZ
- Compensated tax demand: dx^c/dt^S = dx/dt^S + xdx/dZ
 - Compensated tax demand does not necessarily satisfy Slutsky condition dx^c/dt^S < 0 b/c it is not generated by utility maximization

EFFICIENCY COST WITH INCOME EFFECTS

$$EB \simeq -\frac{1}{2} (t^S)^2 \frac{\partial x^c / \partial t^S}{\partial x^c / \partial p} \partial x^c / \partial t^S = \frac{1}{2} (\theta^c t^S)^2 \frac{\varepsilon_{x,q|p}^c}{p+t^S}$$

- Important implication of case with income effects (dx/dZ > 0): making a tax less salient can raise deadweight loss.
- Tax can generate EB > 0 even if dx/dt^S = 0, challenging traditional intuition.
- Example: consumption of food and cars; agent who ignores tax on cars underconsumes food and has lower welfare.
- Intuition: agent does not adjust consumption of x despite change in net-of-tax income, leading to a positive compensated elasticity.

EFFICIENCY COSTS: EFFECT OF BUDGET ADJUSTMENT

- Inattention need not always lead to dx/dt^S = 0. Response depends on how agent meets budget given optimization error.
 - For agents who choose consumption of taxed good (x) first and use remaining funds for y (e.g. credit-constrained), dx/dt^S = 0.
 - Agents who smooth intertemporally and make repeated purchases could cut back on consumption of both x and y in the long run, leading to first-best allocation with dx/dt^S = -xdx/dZ and EB = 0.
- Budget adjustment process does not affect formula for excess burden
 - Empirically observed price and tax elasticities are "sufficient statistics" for welfare analysis.

CONCLUSIONS AND FUTURE WORK

- 1. Agents make optimization errors with respect to simple commodity taxes, suggesting that similar errors could arise in many other policies
- 2. Incidence and efficiency costs of policies can quantified by estimating tax and price elasticities under relatively weak assumptions.
- 3. Normative Analysis: Tax salience may be a key factor in policy choices
 - Consumption taxation: VAT vs. sales tax
 - Salience of EITC, capital taxes
 - Value of tax simplification
- 4. Conceptual approach of using a domain where incentives are clear to infer true preferences can be applied in other contexts, e.g. regulation
 - Design consumer protection laws and financial regulation in a less paternalistic manner by studying behavior in domains where incentives are clear.

EFFICIENCY COST OF TAXATION

Proposition 3

Suppose utility is quasilinear (v(y) = y). The excess burden of introducing a small tax t^S in a previously untaxed market is approximately

$$EB(t^S) \simeq -\frac{1}{2}(t^S)^2 \theta \frac{dx}{dt^S}$$

$$= \frac{1}{2}(t^S)^2 \theta x(p_1, t^S) \frac{\varepsilon_{x,q|t^S}^{TOT}}{p_1 + t^S}.$$

$$\theta = \frac{\partial x/\partial t^S}{\partial x/\partial p} = \frac{\varepsilon_{x,q|t}S}{\varepsilon_{x,q|p}}.$$

EFFICIENCY COST OF TAXATION

Proposition 4

The excess burden of a small sales tax increase Δt starting from small initial tax rates (t_0^E, t_0^S) is approximately given by the following formulas.

i. If producer prices are fixed:

$$EB(\Delta t|t_0^E, t_0^S) \simeq -\frac{1}{2}(\Delta t)^2 \theta^c \frac{\partial x^c}{\partial t^S} - \Delta t \frac{\partial x^c}{\partial t^S} [t_0^E + \theta^c t_0^S]$$

$$= \frac{1}{2}(\Delta t)^2 \theta^c x_0 \frac{\varepsilon_{x,q|t^S}^c}{q_0} + \Delta t x_0 \frac{\varepsilon_{x,q|t^S}^c}{q_0} [t_0^E + \theta^c t_0^S]$$

ii. If utility is quasilinear (v(y)=y):

$$EB(\Delta t|t_0^E, t_0^S) \simeq -\frac{1}{2}(\Delta t)^2 \theta \frac{dx}{dt^S} - \Delta t \frac{dx}{dt^S} [t_0^E + \theta t_0^S]$$

$$= \frac{1}{2}(\Delta t)^2 \theta x_0 \frac{\varepsilon_{x,q|t^S}^{TOT}}{q_0} + \Delta t x_0 \frac{\varepsilon_{x,q|t^S}^{TOT}}{q_0} [t_0^E + \theta t_0^S].$$